D Book
|
繁體版
简体版
科技网
未来车供应链
苹果供应链
产业
区域
议题
观点
每日椽真
报导总览
商情
AI EXPO
Taiwan
SEMICON
Research
半导体
IC 制造
IC 设计
化合物 / 功率半导体
运算
电脑运算
服務器
边缘运算
HPC关键零组件
通讯与云端
宽频与无线
B5G及垂直应用
Cloud
未来车
CarTech
Ev Focus
车用零组件
显示科技
显示科技与应用
AI & IOT
智能制造
智能家居
物联网
AI Focus
移動設備
移動設備与应用
智能穿戴
新兴市场与产业
Green Tech
亚洲供应链
新兴科技
其他
全球产业数据
Research Insights
Special Reports
Tech Forum
服务
到府简报
顾问专案
分析师团队
椽经阁
首页
Colley & Friends
作者群
活动家
首页
DIGITIMES 主办
智能应用
云端 & 網安
产品 & 研发
AI & 创新
其他
影音
Tech
Regions
Research
Opinions
Finance
Biz Focus
Event+
Multimedia
首页
Colley & Friends
作者群
D Book
中文繁體版
DIGITIMES
首页
矽岛.春秋
未来车供应链
苹果供应链
产业九宫格
科技椽送门
展会
影音
科技网
首页
未来车供应链
苹果供应链
产业
区域
议题
观点
每日椽真
报导总览
商情
AI EXPO
Taiwan
SEMICON
Research
半导体
IC 制造
IC 设计
化合物 / 功率半导体
运算
电脑运算
服務器
边缘运算
HPC关键零组件
通讯与云端
宽频与无线
B5G及垂直应用
Cloud
未来车
CarTech
Ev Focus
车用零组件
显示科技
显示科技与应用
AI & IOT
智能制造
智能家居
物联网
AI Focus
移動設備
移動設備与应用
智能穿戴
新兴市场与产业
Green Tech
亚洲供应链
新兴科技
其他
全球产业数据
Research Insights
Special Reports
Tech Forum
服务
到府简报
顾问专案
分析师团队
椽经阁
首页
Colley & Friends
作者群
活动家
首页
DIGITIMES 主办
智能应用
云端 & 網安
产品 & 研发
AI & 创新
其他
影音
Tech
Regions
Research
Opinions
Finance
Biz Focus
Event+
Multimedia
D Book
林育中
DIGITIMES顾问
现为DIGITIMES顾问,臺湾量子电脑暨信息科技协会常务监事。1988年获物理学博士学位,任教于国立中央大学,后转往科技产业发展。曾任茂德科技董事及副总、普天茂德科技总经理、康帝科技总经理等职位。曾于 Taiwan Semicon 任咨询委员,主持黄光论坛。2001~2002年获选为臺湾半导体产业协会监事、监事长。
印度半导体奖励政策与发展策略(一):奖励政策与发展意向
印度内阁在2022年9月21日发布〈Modified Programme for Development of Semiconductor and Display Manufacturing Ecosystem in India〉,用以支持其成为电子系统设计及制造(Electronics System Design and Manufacturing;ESDM)的世界枢纽(global hub)愿景。企业投资印度的常有顾虑之一,乃基础建设不足问题,则由于2020年4月1日公布的〈Modified Electronics Manufacturing Clusters Scheme〉(EMC 2.0)及其中的Common Facilities Center(CFC)来支持。先说基础建设不足的问题,单只是政策及补助是不容易见成效的,因为基础设施有很多部分不单只是投资可以解决的。譬如半导体所需要的高压线及水源,废水、废弃物处理,乃至于环保法规,都需要公权力的行使。这个部分由政府主动地作为先行启动計劃、集中于一处提供较完整的产业基础设施、形成聚落等,是比较有效率的作法,可以省却投资者决策过程中的疑虑,并且加速投资决策后漫长的准备、申请程序。此类作法早有成功的先例,譬如臺湾的科学园区,或者是中国的一些高科新区,都是政府先完成基础设施再招商,让企业的考虑单纯多了。至于发展半导体产业的部分,这个奖励条例可能有点误导之嫌。半导体与显示器虽然享有部分类似制程,却是两个截然不同的产业,产业的业务模式竞争样态差别甚大。不然也很难解释为何中国在发展半导体和显示器两种产业,呈现截然不同的结果。将两种产业的奖励政策以分别的条例来规范是比较安全的做法。印度有兴趣的半导体制造领域包括几类:第一类是逻辑,虽说是所有技术节点政策都支持,现在看来40納米仅是可以接受,目标应该放在28納米;第二类包括化合物半导体、矽光子、傳感器(包括MEMS)和离散元件(以下统称特殊产品类);第三类是封测。对线路设计另有奖励办法,包括对奖励设计产业基础设施(infrastructure)的〈Design Linked Incentive Scheme〉条例,补助设计相关支出的50%;以及支持设计实施(deployment)的〈Deployment Linked Incentive〉,补助净销售金额的4~6%。印度电子与半导体协会(India Electronics and Semiconductor Association;IESA)对政府的建议是依次发展封测厂、特殊产品厂,最后才及于先进制程厂,由易至难,看起来井然有序。先进制程方面,IESA建议聚在28納米上,这是摩尔定律发展过程中每一个晶體管制造成本最低的制程。先发展封测的原因是投入较少、雇用较多人数,次而特殊产品的原因是因为这些工艺过去的发展期较短,比较有机会迎头赶上。但是,如此简化的观点显然忽略规划产业发展应考虑入的细节。诚然,特殊产品的工艺有很多是8吋厂的制程,在传统半导体的制造工艺上看来并不太困难。但是这此特殊产品的晚出现,也有它的道理。譬如化合物半导体的SiC,出现在军用电子产品已有多年,但是SiC晶圆生产困难,良率较低,以至于现在用SiC做的功率元件,其晶圆成本还占元件制造成本的一个相当百分比。类似这样的例子不胜枚举。也就是说,单只是从半导体制程的先进与否来探讨产业发展策略,并非是一个全面的衡量标准。制程简单而晚出现的产品自然是有其他的障碍妨碍它的问世,所以要进入这些领域要有其他投入的准备,譬如半导体材料的研究与开发。即使被视为第一步的封测,也要有类似的心理准备。
2023-09-04
假如室温超导体是真的?
Nature News在2023年8月16发表的新闻以〈LK-99 isn’t a superconductor — how science sleuths solved the mystery〉为题,引用许多验证实验的文献,对于前一阵子在国际学术界、产业界引起的室温超导体骚动,算是暂时划下休止符。超导体在其临界温度(critical temperature)下要同时具有2个物理特性:1. 零电阻,所以电子在流经超导体时不会发热。2. Meissner effect,当有外加磁场时,磁场无法延伸入超导体内。我们经常看到的科普片中一个超导体悬浮于磁铁之上,即为此一效应的视觉展示。超导体现象的发生以前,是需要极严苛的周遭条件,譬如极低温或极高压。也有理论来描述这现象:BCS理论(Bardeen-Cooper-Schrieffer theory)来描述,这是1972年物理诺尔奖得奖作品。需要极端低温的环境下,才发生超导现象严重的限制超导体的应用—因此从1911年发现超导体现象迄今,物理学家致力于发现临界温度较高的超导体的材料。这百年最标帜性的突破是Georg Bednorz与K. Alex Muller于1986年发现的陶磁超导材料(1987年诺贝尔奖得奖作品)及随后朱经武的钇钡铜金属氧化物(Yttrium Barium Copper Oxide)。之后虽然有新材料持续提升临界温度,但是关于其物理机制存有分岐,没有令人一致信服的理论。这其实很大程度的减缓临界温度的提升—没有理论基础的实验尝试,有时看来像是炼金术。Nature News的文章用那些检验实验的结果,简单解释为何LK-99非超导体:韓國团队所看到的部分悬浮(partial lifting)现像是铁磁(ferromagnetism)机制;材料本身其实是绝缘体。看到的电阻在特定温度下骤降,乃因样品中掺有硫化铜的杂质,在那特定温度时硫化铜产生相变,造成电阻骤降。没有杂质的样品,是看不到电阻骤降的现象,这就暂时结论学界目前的扰动:LK-99不是室温超导体。但是如果真有室温超导体,最该立即投入研发的应该是半导体产业。半导体发展迄今,各方向发展的瓶颈几乎都集中于散热问题。半导体发热的来源,简单归结有2个。首先,是晶體管于0与1状态切换所需的能量,每次运作大概花1 fJ(femto Joule,10的负15次方)。看起来数量级很小,但是考虑到现在1片芯片上晶體管的闸极数(gate count),动辄以tera(10的12次方)为单位;而晶體管的运作速度可以达到ns(10的负9次方)等级,也就是每秒最高可以有10萬億次运作,发热量便相当可观。但是,更大的发热源是焦耳热(Joule heat),也就是当电子通过金属时因为电子碰撞晶格产生的热耗散。这个热耗散存在于芯片与芯片之间的金属连线,譬如數據在CPU、DRAM、NAND Flash之间的穿梭来回—这其实是一个电子系统中最大的热耗散来源,也存在於单一芯片之中。现代的IC芯片中有许多的信号线和电源线。现在的新工艺之一:晶背电源分配網絡(BS-PDN;Back-Side Power Distribution Network),将供应晶體管运作电源的线路从原先的金属在線层,移到晶圆背面,使之比较接近坐落于晶圆底面的晶體管。单只是这样的缩短电源线的长度,就能大幅降低芯片的功耗和热耗散。假如室温超导体存在,最该立即投入研发的应该是半导体产业。单只是以室温超导体材料替代目前单一芯片中的金属连线,以及在先进封装中用以连络芯片之间的连线,如此造成的导体价值增进就远超过目前所知超导体的其他的应用价值。当半导体产业制程微缩的路走得日益艰难,先进封装以及新材料必须分担半导体创造新价值成长的责任,而室温超导体显然是新材料领域中,可一举解决目前半导体各方案中最大的共同瓶颈—热耗散问题。虽然此次的挫败显示室温超导体的路途还长,但是室温超导体的利益巨大,作为已走到世界最前沿的几个半导体龙头企业,前瞻研究中室温超导体可以开始考虑涵盖此一议题了。
2023-08-29
产品标准规格对现代半导体产业景观的形塑 (四):统一标准建立的挑战
车用半导体零件标准制订,存在一定的挑战。第一个自然是供应链区域化的趋势。车联网是未来汽车发展的基础框架,目前中国已在多地建立车联网的先导区。中国系统以外的市场是否会采用相同或类似的标准呢?存疑。这可能分裂未来的产业统一标准,乃至于市场。第二个挑战是虽然电动车销售量已超过1,000万辆,但是产品的概念仍存在高度流动性。也就是说,电动车/自驾车的产品概念仍在快速演化之中,这也不是全然的向壁虚构。电动车/自驾车目前的演化方式像过去的手机,最大程度的将既存的可携电子系统全部吸纳进系统中,多少也会依存于既定电子系统的标准。譬如網絡的技术无论如何,也是要基于现行5G技术标准,只是特化于汽车的应用,这样车联网的技术就有粗略的一个技术标准框架了。但是电动车/自驾车更精细的功能犹存有相当的空间,车用半导体零件标准制订必须对这些创价空间留存弹性。挑战还来自半导体本身技术的快速进展。半导体技术不再只依循制程微缩的单一增值路径,增值的方法另外还有使用新材料、先进封装等方法。以已经使用先进封装多年的CIS (CMOS Image Sensor)为例,这是在汽车中已经开始提高用量的傳感器。目前的CIS至少包含像素阵列(pixel array)及影像信號处理器(ISP)2个芯片,以先进封装的方式相结合。由于先进封装技术的进展,堆叠3个、4个芯片—譬如再加上DRAM以及做边缘计算(edge computing)的逻辑芯片—乃至于更多的芯片,都可能在可见的未来发生。封装后的产品,不只是效能参数改进的问题,更是功能变化、扩充的问题。虽然过去其他产品标准的订定也会配合半导体制程的演进而渐进式修改,譬如SDRAM、DDR、DDR2、DDR3 等的演化,但是总体的架构变化是渐近式的,而且每次标准的使用也稳定好一阵子,系统和半导体零件业者都可以使用新标准获得相当回报。然而,车用半导体的变化有可能比较快速而激烈,这对于半导体零件标准制定形成挑战。做为系统厂商的汽车厂商要垂直整合半导体到哪一个价值环节比较有经济效益?如果不考虑地缘政治的因素,我认为到ADAS 或L3、L4自驾芯片的设计也许是个好的界线,这是总结手机公司发展经验可以得到的结论。整合到此部分,系统公司已足以掌握系统核心价值的创造,譬如Tesla的半导体垂直整合目前便止于L4的芯片设计。如果汽车公司再深入半导体制造部分,就容易面临要同时具备多种核心能力-包括汽车设计、制造与半导体制造-的挑战。而半导体的环节也必然会面对规模经济不足的窘境,毕竟竞争对手是不会采用对手设计、制造的半导体零件的。以此来考虑车用半导体零件统一规格标准,在汽车的ADAS/自驾芯片定义界面标准会是一个比较合适的起点。从此以下的半导体零件,制定较为有弹性的架构及可靠性规格。讲架构是因为半导体技术部分还存有流动性,架构性的标准比较容易去接纳新的技术以及相应的新增产品功能;可靠性更多的是针对汽车安全的相关规格。众所周知,汽车对于安全性的要求近乎完美,而可靠性只是对于安全性的基础要求之一。当硬件的标准订定之后,车厂比较能减少责任的风险,它也会让法律的修订、保险产品的设计因有硬件的依据加快进行,而这些非技术的因素是自驾车正式问世的最大难题。
2023-08-24
产品标准规格对现代半导体产业景观的形塑 (三):车用半导体零件的统一标准建立
电动车及自驾车是未来最大的半导体应用领域。汽车产业每年市场超过2萬億美元,超过手机、PC、服務器等市场的总和。2022年电动车的销量已经超过1,000万辆,占整体汽车市场的比例高达13%。电动车/自驾车预计在2030年的制造成本中,有50%会来自于半导体;2040年后由于自驾车趋于成熟,可能更会高达70%。电动车/自驾车与半导体的相互依存程度不言而喻。电动车/自驾车用半导体零件目前并没有齐一的规格。以半导体其他应用—如前述的DRAM经验来看,半导体零件的规格制定会大幅降低半导体零件成本,进而降低电动车/自驾车售价、扩大市场,对汽车和半导体产业是个双赢的策略。但是有部分汽车业者似乎又想走回过去电子系统业者的老路:垂直整合、深入半导体制造环节。具体的例子有比亚迪、博世(Bosch)等。特别是在COVID-19(新冠肺炎)期间,汽车厂商经历零组件断供困境,对于整个汽车产业的供应炼有直接掌握的强烈渴望。汽车厂垂直整合进半导体的考量可能来自于强化核心竞争力。如果一部车子的制作成本有50%,甚至70%来自于半导体,则可能汽车价值的创造也大部分来自于半导体。核心价值相关的硬件全部外购,无疑是把自己降格成组装厂,无法在激烈的竞争中立足。汽车产业与半导体产业的垂直整合,表面上还有其他的好处。车用半导体零件由于没有统一标准,很多是定制化的,汽车业者与IC设计公司的沟通是另一种成本,垂直整合可以大幅削减定制化的交易成本。另外,车用半导体零件的验证期通常很长。半导体设计、制造内化在汽车公司内后,验证的周期可望大幅缩短。但是订定车用半导体统一标准、促使垂直分工成为可能进而获得好处,我认为会比垂直整合的好处还是要大。除了前述的扩大规模经济、降低成本、加速研发进展等好处外,还有对汽车产业特有的好处。譬如统一的规格可以加速立法推动,也可以建立世界公认的验证平臺,加速零件上市的速度等好处。国际半导体产业协会(SEMI)已开始推动车用半导体的统一标准。
2023-08-23
产品标准规格对现代半导体产业景观的形塑 (二):DRAM标准规格改变的产业型态
当DRAM标准规格问世后,马上改变产品的市场竞合规则。DRAM有JEDEC(Joint Electron Device Engineering Council)制定的规格,各公司的产品在电压、频率、信號序列、I/O管脚等定义是完全相同的;也就是说,把模塊条上的一颗DRAM置换成另外一家公司相同规格的DRAM,理论上是可行的。所以产品的竞争领域就只局限在产品推出的时间、成本(制程和良率)和可靠性上。先推出的新标准规格产品虽然市场较小,但享有较高的溢价;用较先进的制程来生产相同规格产品的成本显然较低。这两个因素是产品规格标准化后产生的内建机制,迫使各厂商奋力研发新制程。市场面上产品规格的统一标准化,意味著产品的大宗商品化(commoditization)。大宗商品市场的特性是供应商与顾客的交易程序简单、但是黏著度不高。由于同质商品流动性高,而且与计算相关的系统应用对DRAM的使用量很有弹性—当DRAM占成本比例时就少买些,所以市场对供需平衡的敏感度极高。大宗商品的价格起伏幅度极大,这也解释为何存儲器市场经常性的面临一岁一枯荣的景况。由于大宗商品的产品价格是主要的竞争因素之一,较低的价格让应用方的系统成本也随之降低,销售量变大,反过来回馈到DRAM市场变大。此乃大宗商品特性所带来的良性循环。在产业的价值链中尽可能的增加企业加值节点,以增加企业的竞争优势的策略,称为垂直整合。过去很多电子、通讯厂商采用这个策略因而进军半导体产业,早期的有如AT&T、IBM等,授权技转给臺湾的RCA也是一家系统公司。包括日本全盛时期的NEC、东芝(Toshiba)、日立(Hitachi)、富士通(Fujitsu)等,以及韓國三星电子(Samsung Electronics)、乐金(LG)、现代(Hyundai)原先都是系统公司,也都是依这思路进入半导体领域。DRAM有规格标准之后,相关的上下游零件—譬如CPU与DRAM,乃至于与系统之间就不需要有密切的合作,双方一切照标准规格操课就行了。此导致一个重要的产业结构的变化:上下游垂直整合失去策略优势。所以在DRAM环节的厂商可以专心致力於单一产品的量产,追求规模经济。由较大营业额产生的较大利润可以支持独立的制程研发,进一步拉开与竞争对手的技术差距,整个产业慢慢往寡占的方向演变。甚至只是「类标准」都有可能启动相近的产业正向循环。记得PC是如何快速崛起的吗?IBM首代PC问世后,第二代、第三代的PC XT、AT业界就有IBM compatible的类标准产生。这一方面是由于IBM在产业前期的主导地位,也因为在硬件方面英特尔(Intel)近乎垄断的供应与微软(Microsoft )Windows OS在軟件方面的强势崛起。框架边界的明确定义,促使与之协作各式零组件规格的迅速明确化,协力厂商可以立即专于注於单一产品的优化而建立规模经济,整机的价格可以持续降低,再次扩大系统以及零组件的市场规模,这也是臺湾半导体及电子与通讯系统制造业早期发展的契机。抽象地来说,规格化提供产业链各价值环节的连接标准规格,弱化垂直整合优势,这使得单独的产业链价值环节有生存的可能。当个别产业链价值环节专精於单一产品的生产,规模经济得以建立。对于半导体产业而言,与系统制造业可以垂直分工是重要的一步。可以垂直分工意味著可以分取较多的利润,进而投入尖端制程的研发,这对于半导体产业的发展、茁壮至关重要。由产业的发展历史中也可以看到,原先由系统业者藉垂直整合伸向半导体业者几乎全多褪去,仅存的也在努力剥离系统业务与半导体业务之间的关系。这是已发生过的产业历史。
2023-08-22
产品标准规格对现代半导体产业景观的形塑 (一):DRAM标准规格的形成
在今年(2023年)存儲器价格大幅跌落之前,半导体产业中的产品个别市场排名分别是DRAM(13%)、NAND Flash(11%)以及CPU(9%)。如果将存儲器归成一大类的话,其总销售额还是遥遥领先其他类别,无与伦比。之所以会有这样的排序,主要是因为计算机理论的von Neumann架构中,存儲器与处理器是唯二被提及的硬件,所以处理器与存儲器在各类计算相关的系统产品中—包括手机,都是用策略采购管理的最重要零件。存儲器中的DRAM有由JEDEC(Joint Electron Device Engineering Council)机构所制定的全球标准规格,譬如现在常见的DDR4、LP DDR4、DDR5等。JEDEC也制定NAND标准规格如ONFI(Open NAND Flash Interface)4.0、5.0等,虽然这个标准没有如DRAM规格般的有较强的拘束性,但是各厂家的NAND产品在加上微处理器后形成的永久记忆模塊也大致通用。存儲器有全球统一规格标准,此对现代半导体产业景观的塑造有决定性的影响。最早的DRAM规格标准是JEDEC于1987年订定的FPM(Fast Page Mode),这个年份距离晶體管的发明已经历过40年,摩尔定律的恒常推进已经有些吃力。但是DRAM那时最大的应用市场是PC,新兴大市场才出现不久,有蓬勃发展的生机。此时的主要半导体公司除了老牌的美国半导体公司如英特尔(Intel)、德仪(TI)、超微(AMD)、摩托罗拉(Motorola)、National之外,另外日、韩系统厂商如富士通(Fujitsu)、日立(Hitachi)、NEC、东芝(Toshiba)、三星电子(Samsung Electronics)等也纷纷成立半导体公司,这些就是后来在90年代DRAM市场竞争大放异彩的公司。DRAM有一段时间是整个半体导产业的技术驱动者(technology driver),主要的原因有二:一个是产品特性的因素,另一个是市场因素。DRAM中有超过一半的面积是存儲器阵列,其单元形状相同,结构呈高度重复性。制程微缩对于芯片面积的减少、乃至于成本的降低效果是直接而且显而易见的。因此,制程微缩成为此产品领域的主要竞争因素。市场因素方面,DRAM在80年代末期约略占整体半导体市场30~40%的比例。也就是说,半导体市场盈余主要落在DRAM领域,因此制程研发所需要的经费由DRAM来领军是理所当然。臺湾经历过的产业发展,也见证此一过程。现在成为晶圆制造的常见设施与设备,如12吋晶圆厂、DUV、CMP等,在臺湾都是先由DRAM厂商领先使用的,这种趋势一直至2000年初后才开始反转。
2023-08-21
评韓國半导体10年研发蓝图
继先前韓國总统文在寅发布韓國10年半导体产业发展計劃后,2023年5月韓國科学技术情报通信部(Ministry of Science and ICT)再公布10年研发路线图。前者著重在产业目前的实际发展方针,聚焦在系统芯片,其中最重要的2个部分自然是IC设计公司和代工产业。計劃明显的以臺湾为例,这自然是要与臺湾在此一领域一较长短了。至于10年研发路线图,是结合产业、政府与研究机构的力量,研发新兴存儲器(emerging memories)、逻辑芯片与先进封装,这几乎囊括半导体产业的全部未来新科技了!政策没有重点?不,这不是产业发展計劃,而是前瞻性的科技研发,涵盖面要比较广,目的是买保险。譬如在新兴存儲器方面,研究项目全面性覆盖FeRAM、MRAM、PCRAM、ReRAM等。如果有一种产品终将胜出,也不会因研发项目的选择而错失。大面积覆盖前瞻性科技的策略自然有经费和人力的问题,但是韓國GDP在2022年居世界第十二位,对于国家最重要的产业以举国之力奋力一搏,韓國有这个能力,也是正确抉择。韓國的計劃中有2个亮点值得臺湾注意。一个是in-memory-computing,这是在存儲器中直接执行运算。原来电脑von-Neumann架构中,处理器与存儲器分处2个位置,原始數據与计算结果就在二者中奔波。如此的架构对现代高速、大量运算已形成功耗和速度的瓶颈,因此在存儲器中直接完成计算并且当地储存就成为解决方案之一。这1个议题已经在近年各个半导体会议中得到愈来愈多关注。另一个亮点是神经型态芯片(neuromorphic chips)。这是一种模拟人脑中神经元和突触的结构来执行学习、思考和记忆的功能。现在的人工智能(AI)计算是以GPU芯片为主力。臺湾半导体产业正因为ChatGPT快速崛起而大发利市,未来有可能以神经型态芯片执行AI计算。英特尔(Intel)已有2代产品问世。这二者在业界都是已熟知的未来趋势,重点在于这二者都是以新兴存儲器为基础结构的。臺湾代工业者当然也会涵盖嵌入式新兴存儲器的发展,但是终究不若专精于独立式存儲器厂商那般上心。臺湾存儲器厂商过去虽然产量曾经在世界高居第二位,但是因为个别厂商的规模相对太小,无力负担NAND开发费用,又经历了2009年金融海啸的摧残,因而掉队了。没有足够本土存儲器厂商的加入,在这些领域臺湾的发展是较为欠缺的。甚至是先进封装,臺湾也存有相同的问题。WoW(Wafer-on-Wafer)、CoW(Chip-on-Wafer)等3D封装技术中含有2个以上的芯片,譬如CIS或者边缘计算,其中有的有DRAM等存儲器芯片,一般是由专业存儲器厂来设计与制造。臺湾没有本土的存儲器芯片支持,在未来的竞争上势必遭遇挑战。总的来说,韓國10年研发蓝图涵盖未来半导体各个面向,以举国之力戮力行之。計劃中充分利用韓國在存儲器领域中已经建立的绝对优势投射于未来技术的发展。我的看法是这是个合理的計劃。我另外想问的是,臺湾的政策呢?过去的5+2+2+1中的半导体(后来被迫加上去的)以及最近一任内阁的6项計劃中关于半导体的部分都说了些什么,有谁记得?又真的完成了哪些?或者,更直接些,臺湾有半导体国策吗?
2023-07-13
芯片上的房地产开发—以及晶圆背面的利用(二)
半导体的技术路线路自2016年从原先比较专注于制程微缩的「国际半导体技术蓝图」(ITRS Roadmap),转换成「异质整合」(Heterogeneous Integration Roadmap)后,CIS首先将像素阵列和ADC & ISP用WoW(Wafer-on-Wafer)先进封装方堆叠起来,而芯片键合的方式为铜混合金键合(copper-copper hybrid bonding;HB)。延伸报导芯片的房地产开发—以及晶圆背面的利用(一)如此芯片堆叠方式让原来功能、制程各异的模塊各自以最适合制程分别制造,得到的结果是制程简化,总体效能大幅提升,譬如2个堆叠的芯片中可以有较多的I/O连线、电阻下降、功耗减少、速度变快等优点。更重要的是,芯片的矽房地产基地的面积也大幅减少了。HB堆叠技术是目前各家公司推动的研发方向之一。以三星电子(Samsung Electronics)为例,利用HB,他们已展示可以堆叠16层芯片,咸信这是为未来的高帶寬存儲器(HBM;High Bandwidth Memory)做准备。这与前述的3D NAND结构不同。3D NAND 的存儲器阵列是在单一晶圆(monolithic)上制造,而用HB制造的HBM是在多个晶圆上制造DRAM。如果用建筑的工法打比方,这比较像预铸—各层在工厂中各自制作完成,到工地只做堆叠接榫。无论如何,这也大幅缩减工期和矽房地产面积,其他HB具有的优势也自不待言。CIS做为HI的标竿产品目前已进展到以像素阵列、DRAM、ISP等3个芯片以HB方式封装成1个高效能产品的进程。未来可能还再加入人工智能(AI)芯片,直接用CIS撷取出来的影像信号做边缘计算。当这些芯片如此多层、紧密的堆叠时,散热是一个大问题;另一个是电源供应,特别是高效能运算(HPC)或AI延伸的应用。2022年2月Graphcore推出Bow IPU,是将一个专门用于供电的晶圆,与另一IPU(Intelligence Processing Unit)晶圆以WoW的HB技术封装在一起,解决IPU这类高耗电产品的供电问题。业界更常见的预期是用BS-PDN(Back-Side Power Distribution Network)的方式来解决供电问题。芯片供电首先要进入晶體管,但是传统的供电电压是从金属在線方一路穿透芯片结构到底层的晶體管,不仅占用空间,而且因距离较远因而较耗电。BS-PDN是以另一个芯片做为电源供应的来源结构,将原有的芯片打薄背面,让垫在底下的供电芯片能较近的直接对晶體管供电。如果要供电的物件是已经用WoW组织的多芯片产品,则供电结构可以直接在需要较大供电的芯片(通常是逻辑芯片)背面建构,省略一个衬底芯片。矽房地产的开发利用从微缩、地下室、3D、堆叠,现在连背面也要用上了,吋土吋金。
2023-06-20
芯片的房地产开发—以及晶圆背面的利用(一)
直至今日,芯片的设计与制造都在讲究硅片的土地利用效率,称之为矽房地产(silicon real estate)开发。传统的芯片制造是将结构从做为基板(substrate)的硅片上一步一步堆叠上去的,乃至于后段制程(Back End Of Line;BEOL)的金属连线。一开始做为IC的基础元件晶體管只做一层,像以前的平房,虽然房屋可以栉比林立,但是整体的建筑景观是平整的2D街景。然后是地下室了。在DRAM发展制程的过程中,电容建构在过往方式之一是向下挖深沟,称为深沟电容(deep trench capacitor)。电容存在于晶體管的水平面之下,算是地下室吧!这是积极争取建筑容积率的第一步。以上的平房、地下室的想法在人类史前文化就有,要不,到良渚文化遗址去瞧瞧。从晶體管乃至于金属连线都建构于晶圆的一面,这一面叫前面(front side)。晶體管积体整合程度变高之后,整个芯片就像乡村变成都市,公共设施如供电网、下水道、交通等就得纳入都市計劃。芯片上最重要的公共设施至少包括有电源、信号和热耗散。电源和信号由最上面的金属连线层处理,而热耗散犹如废水,处理不好芯片便无法持续运作。很久以前处理热耗散问题,脑筋动到晶圆背面(back side)。功率元件虽然不算是IC,但是由于功率元件高压、大电流所产生的焦耳热(joule heat)会让芯片发烫,势必要有快速排除废热的管道,于是有了BGBM(Back Grounding Back Metalization)的制程—将晶圆底部磨薄,然后镀上金属,让晶體管的散热快些。这个也可以用城市的基建打个比方:废热的下水道。再来是盖楼了。3D NAND的制程惊才绝艳,只使用4、5个光罩便能做成32层的结构,大幅增加可能储存的信息数量。盖高楼层的自由度一旦打开,建筑物的容积率随楼层数的增加而倍数大幅成长,减轻2D时代芯片地基必须持续微缩的压力。再下来是处理信号的问题。芯片中传统的信号大致以电子传送,管道是制程中的各层金属连线,至今仍是如此,但是这只是内部的信号传递形式。现在的芯片多才多艺,也可以从外界汲取信息—譬如光,然后再转成电信号,CIS (CMOS Image Sensor)就是最好的例子,其后也引领著半导体制程创造性的变革。传统CIS架构与CMOS的建构过程相彷,先做光二極管(photo diode),这算是某种类型的CMOS,其功能是把接收到的光信号转成电信号,以便后续处理。其上也有一般芯片的几层金属连线,更上面有光线进入后的微镜头(micro lens)和滤色片(color filters)。微镜头这端叫前端(front side),是芯片的正面(face)。这整个制程就依循CMOS制程的传统的智能。但是光进来后先要穿越正面几层满布金属线的缝隙,以及芯片的中层结构,才能抵达对光敏感的光二極管。光的吸收效率很差。从工程设计的角度来看,光经微镜头、滤光片后应该先抵达光二極管,直接让它吸收,转化成电信号,然后经金属连线把信号送出去,这才是合理的设计。之所以会变成如此别扭的结构,乃因半导体CMOS制程在演化过程中,就是将CMOS先置于底部,再将线路逐渐长上去的。无独有偶,大部分的生物的眼睛也有如此因演化过程产生的工程谬误。人类眼睛的盲点就是在光敏细胞的演化过程中,视神经先长到视网模前,这个演化的遗迹残留到以后更复杂的眼球结构之中,视神经阻挡视网膜对光线的部分吸收,以致于接近视界的中心点两侧都有对影像无感的盲点。演化无法重来,但是工程可以重新设计。CIS如此别扭结构,解决的方法就是从芯片背面著手:光的进入孔道微镜头、滤光片从比较接近光二極管(视网膜)的方向进来—就是晶圆的背面,在光二極管处转化成电信号后再由上层的金属线路(视神经)送出去处理。这样的结构不会让光被金属连线阻挡干扰,结构合理多了。如此的CIS结构叫背面照明(BI;Back-side Illumination),而老一代的CIS则叫前面照明(FI:Front-side Illumination)。光是一种信号,比之于建筑中的线路属于弱电系统,现在芯片中的部分弱电线路也地下化了,像是光纤或电缆。CIS的结构本来就由多种效能的芯片功能模塊拼凑起来,至少包括像素阵列(pixel arrays)、类比线路(Analog to Digital Converters;ADC)、逻辑线路(Image Signal Processors;ISP)等组成,而这些模塊在半导体制程看来就是异质(heterogeneous)。因此在异质整合(heterogeneous integration)的年代开始后,CIS的结构创新引领许多矽房地产变革的生发。
2023-06-19
中国停止采购美光产品可能的市场反应
2023年5月21日中国国家互联网信息办公室发布消息称,美光(Micron)在中国销售的产品未通过網絡安全审查。按照中国《網絡安全法》等法律法规,中国境内关键信息基础设施的营运者,应停止采购美光产品。针对这件事,南华早报在2023年5月29日已做评论。在中美科技对峙的氛围下,美国的科技公司遭逢此种裁定是意料中事,美光成为箭靶是因为「美光是美国对中国不仅提起多次知識產權诉讼,还经常游说美国反对中国的大型芯片产业公司」。南华早报这一部分的陈述离事实并不太远,美光是全世界存儲器厂商中最常使用非商业竞争手段打击同业的。专利侵权、反倾销(anti-dumping)、反补贴(counter-veiling)等手段使用得淋漓尽至,充分利用美国在国际政治的力量,以及过去是世界重要半导体市场的主场优势。世界上没有任何一家存儲器公司能幸免于此困扰。即使其本身亦有涉案在DRAM反垄断案中,美光也以其较熟悉的反垄断局宽大处理計劃(Leniency Program)最后安然脱身。美光如此常态行为,的确较容易成为反制的对象,但是中国政府是否真正以此因素为主要考量而下此决定,就不得而知。中国官方宣布的根据或理由令人费解,主要是因为DRAM的产品特性,它是「大宗商品(commodity)」。DRAM产品有世界统一的规格,像DDR4、DDR5、LP DDR4等界面规格,同一规格的产品,其电压、传输速度、信號次序等规格是完全一样,都是由JEDEC这个组织统一制定的。理论上,一家公司某一特定界面的产品完全可以被另一家公司相同界面的产品直接插拔替代。如果美光的产品要刻意增加其他公司没有的「功能」,这些增加的线路势必在产品的成本上重惩美光。所以说这个根据或理由,业内人士很难理解。如此措施会引发哪些市场反应呢?当前的存儲器市场由于PC和手机市场的低迷,处于极端的不景气状态之中,这是整个产业现在共同感受。这个裁定对于美光的短期冲击雪上加霜是显而易见的。但有几个理由会让这个裁定的影响可能没有想像中的严峻。第一,是美光的前置准备。这几年中美科技的对峙已经持续多时,特别是美光在与晋华进入诉讼程序之后,美光不可能没有应变計劃,否则就是经营得太漫不经心了。第二,是美光传统的市场策略。美光在很长一段时间内的市场策略是极大化利润,而不是保持客户的黏著度,理由是前述的DRAM是大宗商品这一原因。由于存儲器是大宗商品,很难由产品的差异化来提升顾客的忠诚度,利润极大化是合理的市场策略。基于此一市场策略,美光销售体制使产品销售对象转换的弹性即相对较高。第三,还是大宗商品的特性所导致的。DRAM由于可相互替代,对于系统公司零件转换成本较低,只要有价格差距就有转换诱因。所以此措施净效应就是存儲器各寡占公司与顾客的重新议价与配对洗牌。顾客与供应商重新接头、议价需要交易成本,也需要时间,所以将延缓整个产业的復蘇时间。对于个别厂而言,当然会有所损失,但是还不致于窒息。大宗商品嘛,如水银泻地,无孔不入的。要不,俄国石油被那么多国家抵制,不也卖得好好的?
2023-06-13
订阅椽经阁电子报
新文章上刊时发送,提供您DIGITIMES专家及顾问群的最新观点、见解。
推荐活动
硬件網安白皮书
邦博士快讯
热门报导
Edge AI产业来了吗?
臺湾量子电脑的发展策略
资通讯工程师的职涯思考
臺湾电子制造服务业养成记:PC、手机、AI服務器以及与半导体的深度结合
院长说院史(1):臺湾第一座国立信息学院
<<
4
5
6
7
8
>>
智能应用
影音