智能应用 影音
DForum0116
Event

物联网医疗复健机

结合物联网技术,机器人辅助步态训练(RAGT)进一步强化中风后的神经和功能恢复。图为日本丰田推出的复健机器人设备。

中风是全球导致死亡和致残的主要原因之一,其中由运动障碍引起的功能性残疾是中风后常见的问题。约60%的中风患者在中风后失去行走能力,20%的患者在1年后仍无法独立行走。恢复行走能力在中风康复中至关重要,直接影响患者的生活品质。

传统的物理治疗和职能治疗计划,历来支持中风后的神经和功能恢复,但结果往往难以预测。为改进康复策略,机器人辅助步态训练(Robot-assisted gait training;RAGT)这种创新方法应运而生,专注于改善行走能力。RAGT透过重复特定任务,促进运动学习和功能改进。这项技术使患者能够参与高强度的训练,例如在10分钟内完成300步,减少依赖物理治疗师。结合物联网技术,RAGT进一步强化中风后的神经和功能恢复。

RAGT有2种方法:末端效应器法和外骨骼法。在末端效应器法中,患者的脚放在足板上,模拟步态的站立和摆动阶段;在外骨骼法中,外骨骼装置透过驱动装置,在摆动阶段弯曲髋部和膝盖,并配合跑步机模拟站立阶段。综合研究深入探讨这些方法的临床、技术和监管层面的应用,为临床医生提供了有关机器人康复潜在恢复机制的宝贵见解。

被动训练模式和重力补偿功能为处于急性或亚急性阶段的中风患者提供早期康复,使他们能够专注于运动控制。透过病历查阅,收集参与者特徵、中风细节和合并症信息,同时透过脑部CT或MRI提供病变位置和中风类型的信息。为评估治疗前日常生活活动(ADLs)的独立性,须对病人进行多项评估,包括Berg平衡量表(BBS)、Brunnstrom阶段、匹兹堡睡眠品质指数、Fugl-Meyer下肢功能评估(FMA-LE)和总分(FMA-total)。在慢性中风患者的研究中,常使用POMA的移动性能评估来衡量平衡和步态,并使用BBS来测量姿势控制和平衡。这些参数在评估和定制康复干预计划以达到最佳结果。

下肢运动功能主要涉及平衡和步态,这些元素是相互关联的,在中风后经常下降。BBS以其在衡量平衡功能中的高信度和重测信度而着称,特别适用于中风幸存者的评估。步态分析是下肢运动功能的重要评估工具,推荐用于评估和增强中风后的行走能力。结合BBS和步态分析可全面评估平衡和步态,作为衡量康复干预效果的重要参数。这一综合方法提供了对患者在恢复移动能力和执行日常任务进展的全面理解。

利用物联网技术,我们在中国医药大学开发出一套系统MRGtalk,这是一款针对中风及神经障碍引起的下肢康复的应用辅助前端系统,提升老年人的肢体活动和身体健康。MRGtalk使用普适计算(Pervasive Computing)进行下肢康复,强调肌肉力量的改善和行走能力的增强,包含:1. 增强感官反馈的三点支撑设计促进全负重的站立踏步训练;2.根据个人能力,可通过具有网页浏览器的固定或移动设备远程调整训练参数(步长、频率、轨迹和持续时间);3.多患者独立训练模式优化时间和精力的使用。

作为应用辅助前端,MRGtalk输出关键的训练参数。临床实验显示,其在改善中风患者的下肢肌肉功能、平衡和行走能力方面具有良好效果。MRGtalk简化RAGT过程,减少了治疗师提供手动辅助的需求,是资通讯技术运用于复健的一个典范。

现为国立阳明交通大学资工系终身讲座教授暨华邦电子讲座,曾任科技部次长,为ACM Fellow、IEEE Fellow、AAAS Fellow及IET Fellow。研究兴趣为物联网、移动计算及系统模拟,发展出一套物联网系统IoTtalk,广泛应用于智能农业、智能教育、智能校园等领域/场域。兴趣多元,喜好艺术、绘画、写作,遨游于科技与人文间自得其乐,着有<闪文集>、<大桥骤雨>。