在前一文中,我们类比互聯網(Internet)以及现今大型语言模型(LLM)的发展轨迹,特别是互聯網的核心传输单位—封包(packet),LLM生成单位—语意单元(token),在基础设施、商业模式发展上呈现出明显相似性。
透过回顾packet的发展路径,我们试著描绘出token驱动的AI未来发展轨迹,并预判在产品形态、服务模式与产业价值链上的可能样貌。
另一可供借镜的历程,是应用程序(App)在移動網絡时代所引爆的创新与变革。如今,在LLM/LVM多模态大模型推动下,一个以「Agent」为核心的应用生态正逐步成形。延续上文,我们尝试从App的崛起历程,看见代理(Agent)以及边缘AI(Edge AI)未来的可能路径。
2007年开始,移動App实现實時互动与高速數據交换,移動用户大量增加,源自于網絡封包传输成本逐步下降,智能手機的运算效能与续航力的进展。App Store的出现更将过去分散、复杂的网页互动模式,整合为图形化、易于操作的应用程序界面,大幅降低使用门槛,使數字服务真正「移動化」、「普及化」。App 不再只是单一功能工具,更透过推播、定位、社群整合等特性,深度嵌入使用者生活。这也带动「长尾效应」—不仅少数爆红应用,而是无数利基型App满足多元、个人化的需求。
这场从网页到App的转变,不只是界面革新,更兴起全新App驱动的生态系,翻转整个數字服务的生产与分配模式,也同时快速推升移動設備的需求(2017年达到高峰)。App Store 建构出一套双边市场机制,一端连结开发者创新、另一端连结全球使用者,使原本无法规模化的服务得以商品化、在地化与全球化。过去崭露头角的數字服务如Uber、LINE、Instagram皆倚赖App生态兴起,而App的爆发也带动芯片、傳感器、模塊、电池、存儲器等硬件需求,重塑移動設備供应链结构,并促成新兴品牌与 ODM/OEM 的崛起。
Statista统计显示,全球App下载量自2010年的60亿次,成长至2023年的1,430亿次,反映出App模式背后强大的规模经济与網絡效应。臺湾厂商在这波移動化浪潮中,从晶圆代工、封装测试到系统整合与 App 开发皆深度参与,建立完整供应链与生态網絡。这段历程不仅重塑移動产业结构,也为即将兴起的AI代理(AI Agent)模式提供宝贵借镜——当使用者界面再次从App进化为Agent,我们是否能抢先洞察使用需求、运算架构、标准制定与硬件整合的关键优势?
如果App是移動網絡时代的使用界面,那么由大模型LLM/LVM驱动的Agent,可能是 AI 时代的核心入口。Agent不仅理解自然语言(及各种傳感信號),还得具备任务规划与执行能力,从单纯对话升级为數字助理。透过多模态推理与工具链结,Agent的应用场景正快速扩展至自动化工作流程、专业咨询、教育训练与知识辅助等领域。
未来极可能出现类似「Agent Store」的新型生态系,就如当年App Store一样,汇集多样化、可重组的智能模塊,满足多样性需求。这将加速硬件与軟件的分工整合,促进各种垂直应用场域(如工业、医疗、中小企业、消费者市场)中智能代理的落地机会。随著近来高效率推理模型的快速演进,以及LLM开源生态的蓬勃发展,更进一步推进这样的可能性。同时,终端市场的实际需求也正在浮现,如中小企业的知识管理、自动化应用,以及工控领域中實時推理能力的渴望,也回应了市场的需要。
终端装置的硬件规格,也逐渐具备支撑Agent所需的AI算力与存儲器条件。随著LLM开源社群快速演进,如13B等级模型已能在一般移動設備上顺利推理,token生成速度亦逐步接近应用需要,Edge AI的落地门槛正快速降低。根据预测,Edge AI芯片市场将自2023年的24亿美元,成长至2033年的252亿美元,年复合成长率高达26.5%。各大系统与芯片业者也已积极布局AI手机、车用SoC与AI PC平臺。未来,Agent将可自然地嵌入手机、筆記本電腦、AR眼镜、TWS耳机、机器人等多元终端装置,成为新一代语言互动与任务导向操作的使用界面。
当然,Agent技术的普及仍面临诸多挑战,除了使用者數據的授权与使用,日益增强的自主性也带来安全、隐私、监管与伦理等层面的高度关注,技术本身的复杂度亦不容小觑。然而巧合的是,这些挑战与机会的交织,恰如2007年移動網絡时代初启时的情境—从应用模式、生态系到硬件需求与供应链架构,皆酝酿著重塑的可能。Agent的发展,正释出一种熟悉而微妙的信號,预告另一波产业典范转移的起点。