智能应用 影音
Microchip
ADI

别闹了! 8纳米

中国自制的曝光机能力已进入以准分子雷射为光源的第一代曝光机时代。

好笑的是这条中央社发的消息持续被其他媒体引用,引发后续讨论。我以为台湾是半导体之域,媒体至少有起码的半导体ABC知识。

别闹了,8nm!

这个信息内容内容有不一致的地方,氟化氩(ArF)雷射的波长是193nm,氟化氪(KrF)雷射的波长才是248nm。从另外2个数据来看,248nm几个字比较有可能是误植。

用氟化氩雷射当光源,乾式(dry)曝光机一般的分辨率(resolution)在80~90nm左右,浸润式(immersion)曝光机一般的分辨率在38~40nm左右。公布的数值在两者之间,我猜是乾式的曝光机再加上已知的可以改善光学系统的诸种手段。这里讲的分辨率,一般是指单次曝光(single exposure)所能达到的最小尺度。

数据中的另一组「套刻精度小于8nm」则是引起此次无妄之议的罪魁祸首。

两岸译名有所不同,曝光机在中国叫光刻机,而套刻精度在英文中是overlay accuracy ,指的是上下2层光罩层对准(align)可能产生的最大误差,这与能用此曝光机能做出何种技术节点的能力完全不是一回事,但是套刻精度只有8nm的曝光机,肯定做不到8nm的制程也是铁铮铮的事实。

上述的信息对我来说,只是中国的曝光机能力已进入以准分子雷射(excimer laser)为光源的第一代曝光机,如果其表现真如其规格所述,这算是改良过的第一代DUV曝光机。

再进一步发展是浸润式氟化氩曝光机(ArF immersion lithography)。虽然水的折射率1.333理论上可以提升机器设备的许多规格,但是由于运作机制存有主要变化,发展所需时间可能较长。

更进一步是极紫外光曝光机(EUV lithography),这个有些难。毕竟现在ASML的极紫外光曝光机是DARPA于90年代就开始研发的。即使以现在的技术和后发者的知识可以缩短开发时程,但是EUV的光源产生和光学系统与DUV完全不同,多费些手脚也是理所当然。

所以中微半导体董事长尹志尧说,中国的机器设备与客户群处在技术领先位置的国外厂商相比,还差了两、三代是确评。

至于晶圆制造厂的制程能力呢?分辨率只是曝光机台本身的能力,制程中还有其他众多手段可以改进在晶圆上最终图案化(patterning)的能力,其中最为人知的手段是多重曝光(multiple exposure)如曝光蚀刻曝光蚀刻(Litho-Etch Litho-Etch;LELE)、间隔物辅助双图案化(Spacer-Assisted Double Patterning;SADP)、光刻冷冻曝光蚀刻(Litho-Freeze Litho-Etch;LFLE)等方法;也有行之有年光学邻近校正(Optical Proximity Correction;OPC)等方法。例如氟化氩浸润式曝光机的单次曝光分辨率在38~40nm左右,经过上述方法的处理晶圆上的最小尺寸可以精确到10~12nm。

中国早已进口氟化氩浸润式曝光机,台积电可以用以制造7nm制程,中国当然也可以,良率高低和时间早晚而已。至于更先进的制程节点也并非全无可能,也是良率、成本和产能的问题。

所以中国半导体制程的能力问题,根植于其先进制程设备的自制率,其弱势是在曝光机、离子植入机(ion implanter)和电子束检测系统(e-beam testing system),其中曝光机的自制能力自然最受瞩目。

如何跨越外在设下的限制?除了沿外界已经发生过的EUV研发路径之外,纳米压印(nanoimprint)可能是一个途径。纳米压印已经应用于3D NAND的量产,机台的分辨率在5nm左右,只是它的晶圆产量(wafer throughput)不高。但是它的机台单价较低,目前解决方式就是以机台数量来弥补产能。

在DRAM与逻辑的应用上,纳米压印在良率还有所不足,得改善如颗粒等问题。纳米压印机中国已有了,问题也是要花多长时间才追得上世界技术前沿?

 

现为DIGITIMES顾问,1988年获物理学博士学位,任教于中央大学,后转往科技产业发展。曾任茂德科技董事及副总、普天茂德科技总经理、康帝科技总经理等职位。曾于 Taiwan Semicon 任谘询委员,主持黄光论坛。2001~2002 获选为台湾半导体产业协会监事、监事长。