智能应用 影音
EVmember
ST Microsite
矽光子的发展与挑战(四):产业挑战
矽基光子整合线路概念肇始于1985年,在1991、1992年时于SOI(Silicon-On-Insulator)晶圆上,展示低光子损失的波导。90年代初期的先进制程大致落在0.6~0.8微米之间,这还是6寸厂的年代。这个临界尺度比现在大部分的光子元件都大,那时若有比较成熟的光子元件与PIC(光子整合线路),和电子元件与EIC(电子整合线路)的整合是有说服力的,因为做出的光子元件尺寸与电子元件尺寸不会相差过大。  但是现在矽光子才开始要启动量产阶段。现在矽光子所要开启的时代叫大尺度整合(LSI;Large-Scale Integration),其定义是一个芯片上的光子元件数目在500~10,000个之间。下一个阶段的超大规模尺度整合(VLSI;Very Large-Scale Integration),亦即光子元件数目大于10,000个的整合芯片。熟悉电子集成电路的读者看到这个数目想必会哑然失笑,现在较先进的半导体产品其门数(gate count)动辄上千亿乃至于万亿以上, LSI上光子元件数目真的见小了。  芯片上光子元件的数目如此受限,其症结在于光子元件的尺度取决于矽的透明波长及折射率,结果就在毫米尺度范围。以任何PIC一定会用得着的波导来看,最小的波导寛220~500纳米、高220~300纳米之间,长度则从微米到毫米。其它的光子元件,如MHI、传感器的面积从几百微米平方至几毫米平方不等,其他的调制器也都在这个数量级。  除了光子元件本身所占的空间之外,光子元件之间为避免互相干扰必须留有的间距,其实比光子元件本身更大。所以光子元件未来面临的第一个挑战就是利用PIC设计、材料与结构创新以缩小光子元件的尺寸。  一个芯片上容许的光子元件太少很难执行复杂的功能,幸好目前的LSI大致可以满足当下迫切需要的短、中距通讯应用需求。  第二个问题仍然是尺度的问题。PIC与EIC二者尺寸之间相差几个阶秩,这就造成单芯片整合(monolithic integration)中PIC与EIC难以匹配的问题。  举例来说,格罗方德(GlobalFoundries;GF)矽光子代工平台使用12寸45纳米SOI晶圆。对于EIC来讲,45纳米也许是适合的制程平台,但是SOI晶圆的价格比常规的12寸晶圆价格是倍数的昂贵;对于PIC而言,用12寸45纳米制程是大材小用,单只是PIC的话,8寸的制程足矣。何况对于目前的目标应用AI服务器上的短、中距离通讯,高速、宽频、低功耗的需求是显而易见的,满足这些需求可能需要至少22纳米才能制造的FinFET。EIC与PIC的兼容性益发紧张。  幸好先进封装也同时在此时兴盛,这使得矽光子元件的整合变得有弹性,选项包括2.5D封装、3D封装、异质整合(heterogeneous integration)等。  以目前即将进入量产的大型平行光学元件(LPO;Large Parallel Optics)以及联合封装光学元件(CPO;Co-Packaged Optics)为例,二者都是以2.5D先进封装的方式来整合EIC及PIC,以达到低延迟(latency)、低功耗以及其他的优点。  另一个问题是生态发展。矽光子元件整个产业链生态面临的问题之一,是来自于光子元件的多样化。  电子的EIC主要构成分子就是晶体管。虽然晶体管实际上还是有不同的种类、具有不同的特性,譬如逻辑线路的晶体管比较注重快速开关(switch)以提高运算效能;而DRAM线路的晶体管比较留意漏电流(leakage current),以延长信息保留时间(retention time)。但是即使晶体管的特性是有些不同,晶体管做为积体线路架构的基本单元是毋庸置疑的。  但是PIC的状况完全不同,尤其是负责编码光子信息的调制器,种类繁多。又由于现在一个芯片上光子元件数目还在可控范围之内,PIC设计工程师比较有机会去选择元件并调整其参数藉以优化整体PIC的效能,也就是设计工程师看起来更像元件工程师(device engineer)。这使得芯片上调制器看起来五花八门,也在未来代工平台的制程标准化平添一些小障碍。  另外的问题还有做为PIC代工产业的辅助生态架构问题,包括EDA、IP、PDK(Process Design Kit)、整合元件测试等问题。这些问题在矽光子代工过去做的比较久的GF着墨比较多,对于即将进入量产的其他公司应该也不会造成太大的障碍,毕竟这些都是在以前EIC代工业务发展过程都经历过的。 AI兴起之后,预计芯片与芯片之间、服务器与服务器之间的短、中距通讯会变成主要的通讯型态,甚至超过数据中心与终端用户之间的通讯量。由此强大需求来驱动矽光子技术的发展以及生产体制的成熟、完善是产业界的优先之事。
矽光子的发展与挑战 (三):光元件以及光路
光子若要能被当成信息的载子,就至少要具备可被程序化、传递和传感的功能。光元件大致可分为4个范畴:光源、波导、调制器和光子传感器(PD;Photonic detector)。 光源是异于电子线路的特殊存在。在电子线路中,电子是矽材中原来就富含的物质。只需要施加电压予以控制,就可以程序化以携带信息,传感电子以提取信息也是容易的事。但是矽在正常的状态中并不存在光子,光子要人为制造出来—从外头接入光源,或是在矽芯片上制造光源。 由外头引入高功率、高效能的光源,常用的有譬如磷化铟(InP)和砷化镓(GaAs)雷射。如果要谈整合入矽光子系统,磷化铟的1,310纳米和1,550纳米波长基本上是比较合适的选择。砷化镓的850纳米波长在矽中会被吸收,如果要整合入矽光子的PIC中,需要用氮化矽(SiN)当波导。这会增加制程的复杂性,当然也会增加光子元件的尺寸和成本。 可以整合入矽光子制程,或者以异质整合方式进入的光源还有雷射二极管(laser diode)、发光二极管(Light-Emitting Diode;LED)、整合III-V雷射(integrated III-V laser)、量子点雷射(quantum dot laser)等,这些对于不同的应用各有优缺点。 波导是被动元件一种,意即它不用外来的能量、只靠物质本身的材料特性或元件结构就能执行导引(guiding)、分离(splitting)、组合(combing)、耦合(coupling)、过滤(filtering)、复用/解复用(demultiplexing/demultiplexing)、延迟(delay)等功能,所以波导器上也多有加上能执行以上功能的光元件,譬如加上耦合器(coupler)以与光源连接。 光在矽波导中传递可能会遭遇光子损失(photon loss)的问题,主要的原因是波导内壁的粗糙(roughness)问题,这是波导制程的挑战之一。 调制器的种类繁多,这是因为前文中说的光可用来程序化以承载信息的自由度很多。 常见的调制器有用来调制相位(phase)和振幅(amplitude)的马赫曾德干涉仪(Mach-Zehnder Interferometer;MZI)、环形谐振调制器(ring resonator modulator)、载子耗尽调制器(carrier depletion modulator);调制振幅的电吸收调制器(Electro-Absorption Modulator;EAM);调制相位的相位调制器(phase modulator)、热调制器(thermal modulator);调制波长与频率的可调谐滤波器调制器(tunable filter modulator)等。 调制器基本上是主动元件,亦即需要外来的能量注入以调制光的强度(intensity)、频率、振幅等,这些都是与能量密切相关的物理量。而且,调制的手段通常是透过电来改变物质的特性,譬如用电压或产生热来改变材料的折射率,进而调制光的诸种特性,这些手段都有能耗的。最后是光子传感器它的功能是将光信号转为电信号,以利于进一步处理、储存及传送信号。光子传感器的种类有光电二极管(photodiode)、雪崩光电二极管(avalanche photodiode)、光电倍增管(photomultiplier tube)、电荷耦合元件(Charge-Coupled Device;CCD)等,各有应用领域。 光子传感器材料包括矽、矽锗(SiGe)以及砷化镓铟(InGaAs)等。以目前与AI相关的矽光子应用而言,矽锗光电二极管在波长区间、响应(responsibility)、速度和整合程度各种技术特性的综合考量下,矽锗光电二极管是比较合适的选择。光子元件范畴的复杂程度以及各范畴内元件选择的众多,充分显示矽光子还处于发展的早期,这对即将展开的矽光子量産构成生产制程以外的非技术挑战。
矽光子的发展与挑战(二):矽光子材料性质
矽光子(silicon photonics)是指在矽基半导体中,整合入可以调制光子的光子元件,在芯片中或系统中,可以同时协作电子积体线路(Electronic IC;EIC)、光子积体线路(Photonic IC;PIC)的功能。  目前已经开始量产的矽光子产品,绝大部分是用于长距离通讯的收发器(transceiver),其中包含传送/接收电/光信号以及转换、处理信息的功能元件。 延伸报导名人讲堂:矽光子的发展与挑战 (一):电子与光子 现今矽光子的急迫需求与近年来人工智能应用的迅速兴起密切相关。人工智能的模型训练过程中,信息的传递大量集中于芯片与芯片之间、服务器与服务器之间。在可预测的未来,数据的传递超过7成以上会是这种短、中距离的通讯类型。数据流量和密度的骤增,产生大量焦耳热,散热遂成为半导体技术发展中最尖锐的问题。  根据原先的异质整合路线图(Heterogeneous Integration Roadmap;HIR),矽光子应该在2020年就进入异质整合量产的时程。迟了近5年,现在终于要启动了。  围绕在矽基半导体讨论PIC,除了矽的制程比较成熟外,自然是有矽的材料特性考量。  首先,矽对在1.1~8微米的近、中红外(near to mid infrared)区域波长的光是透明的,也就是说红外光在矽中可以通行无阻,不会被吸收,这是让光子能当信息载子的先决条件。  矽的另一大优势在于它的高折射率(refraction index),在近红光的波长范围内,矽的折射率大概是3.5。这意味着—譬如常用的光纤通讯波长1,550纳米的光,在矽中只有1550/3.5=443纳米的波长,光元件尺寸可以因为高折射率的原故而大幅缩小。以前述波长光子可以通行的波导(waveguide;功用有点像电子的金属线)为例,单模(single mode)的波导一般就定在220纳米(方形波导的截止波长(cut-off wavelength)是光的半波长)。  矽的非线性光学效应(nonlinear optical effects)也相对的比较强,譬如在近红外区的双光子吸收(two-photon absorption;TPA)以及自由载子吸收(free carrier absorption;FCA)。非线性光学效应通常可以用来调制光线,即矽的材料特性适合做PIC的主动元件(active device)。另外,相较于其他候选材料,它的散热系数较高,比较适合做高功率光元件。  矽的材料当然也有缺点。第一个缺点是矽的能带间隙不是直接能隙(direct bandgap),白话的说就是矽无法利用它的自然能隙来产生光子。所以如果要在矽晶PIC上直接做出光源,一般需要外来异质材料当成光源,譬如加入III-V族的元素以做出量子点之类的光源。  另外,有一好没两好。有较活泼的光学特性也意味着光在矽中传导比较容易产生光子损失(photon loss),这也是做矽波导的主要挑战之一。  幸好有兼容于矽半导体制程材料氮化矽(SiN)可以与矽互补,这是半导体业界非常熟悉的材料。氮化矽可以用化学气沈积法(CVD)长于晶圆之上,这是半导体的标准制程。  氮化矽的折射率较低,在1,550纳米时只有2,所以做出的光元件肯定比较大。但是它的TPA和FCA非线性光学效应都比较小,做出来的波导光子损失也比较少。  另外,氮化矽对光的透明应间自400纳米~7微米,在可见光的区间它也是透明的。这一点对有些应用至为重要,譬如生物传感器(biosensor)常常需要使用可见光波长的波段。  2种材料对照来看,矽比较适合做需要比较紧致线路、高效能、高能耗的主动元件;氮化矽比较适合做光被动元件(passive device),譬如低光子损耗的波导、谐振器(resonator)、筛选器(filter),或者需要可见光波长、较低非线性光学效应的应用。  另外有数种材料因为它们独特的非线性光学效应也被考虑在不同应用之中,譬如钽酸锂(lithium tantalate;LiTaO3)它有很强的非线性光学性质如二次谐波产生(Second-Harmonic Generation;SHG)和参量振荡(parametric oscillation)。更重要的是它有很强的电光效应(electro-optic effect;Pockels effect),可以用电场快速的调制光子,在光子计算(photon computing)的应用中,此乃天选之物。 
透过物联网技术 抢救小猪大作战
在猪养殖业中,仔猪死亡率是一个需要仔细处理的严重问题。特别是,在头三天里,有7.5%的仔猪会被母猪意外压死。平均每天有1.2头仔猪被母猪压死。具体来说,仔猪压死可能发生在母猪躺下或翻身时。这样的事故更容易发生在较弱的仔猪身上,因为较弱的仔猪更有可能靠近母猪吸乳。此外,当产房温度较低时,仔猪也会更靠近母猪保暖。因此,为了防止仔猪被母猪压死,我们应该避免仔猪饿和受冷。或者,可以使用产房笼来限制母猪的姿势变化,并为仔猪提供更安全的空间。当一头仔猪被压死时,养猪者必须在太迟之前迅速采取移动。一位技术娴熟的养猪者可以通过仔猪的尖叫声来检测仔猪的死亡,并强迫母猪站起来或将被压死的仔猪与母猪分开。然而,监控产房笼对养猪者来说是一项全天候的工作,而劳动成本过高。物联网技术可由麦克风感应器中收集猪的声音数据,并在仔猪被压死时自动采取移动。我的研究团队利用 IoTtalk 的物联网设备管理平台,提出了 PigTalk 技术,来解决仔猪被压死的问题。透过对产房收集的声音数据进行实时分析,PigTalk 检测是否有任何仔猪尖叫事件发生,并自动启动母猪警报器进行应急处理。PigTalk利用一种音频转换方法来预处理原始声音数据,并在机器学习中利用最小-最大标度化来检测仔猪的尖叫声。PigTalk以上述数据预处理方法与机器学习模型微妙的参数设置将仔猪尖叫检测准确度提高到了 99.4%,比以前的解决方案(最高达 92.8%)更好。PigTalk 可以在 0.05 秒内拯救 99.93% 的仔猪。这样的结果已在商业化的产房得到验证。PigTalk 是一种新方法,可以自动减轻仔猪被压死的情况,这是过去无法实现的。PigTalk提供一个线上操控的GUI (graphical user interface),猪场饲主可用手机控制强迫母猪站起来的致动器(Actuator)。图(a)提供的致动器包括振动地板、气流喷射、洒水系统和电极(有些不太人道,并未真正实作)。当猪场饲主收到警报时,他/她通过手机观看从摄像机 (图(b)) 发送来的视频,并可操作摄影机放大影像,清楚观察(图(c)) 。如果仔猪的尖叫声不是由于被压死引起的,那麽养猪者可以远程停止致动器 (图 (f))。如果确实发生了仔猪压死,则他/她应该跑到笼子处理这个仔猪压迫事件。养猪者可以选择打开或关闭致动器 (图 4 (a)),当危险情况得到缓解时停止致动器。在PigTalk中,环境致动器例如加热灯可以手动打开/关闭 (图 4 (d)),或者在温度变化时自动打开/关闭 (图 4 (e))。PigTalk抢救小猪大作战是运用AI及物联网技术的很好范例。关于技术的详细信息,请参阅W. E. Chen, Y.-B. Lin, L.-X. Chen (2021, June). PigTalk: an AI-based IoT Platform for Piglet Crushing Mitigation. IEEE Transactions on Industrial Electronics, 17(6): 4345-4355。 
矽光子的发展与挑战 (一):电子与光子
自然界基本作用力有4种,由强至弱排列:强作用(strong interaction)、电磁作用(electromagnetic interaction)、弱作用(weak interaction)以及重力作用(gravity)。20世纪以及21世纪的文明,除了核能与强作用相关外,主要是由电磁作用的应用所铺展开来的。  电磁作用的基础理论是电动力学(electrodynamics),马克士威尔方程序(Maxwell’s equations)就是其中描述电磁场与电荷、电流作用的基本方程序。在现在人类文明已能处理个别粒子行径的当下,量子现象变得格外重要。能处理量子现象的电磁学叫量子电动力学(Quantum ElectroDynamics;QED)。  QED是最基础的理论之一,人类知识领域的最前沿。至今所有的实验数据与QED的理论预测完全符合,实验与理论精确度的竞赛都已经较劲到小数点后12位了!说QED是人类文明坚实的柱石一点也不为过。  QED理论中有2个主角:电子与光子。前者扮演的角色比较单纯,就是有质量、带电荷、有自旋(spin)的粒子;后者除了本身是粒子外,也是产生电磁作用的中介。  电子,或者电子集体移动的电流,我们感觉上比较熟悉,是我们在材料中容易操控的物质。它们被用来当成携带/储存信息的载子(carrier)。譬如将电容上有无电荷存留的状态,当成1或0;或者将晶体管中有无电流流过,当成1或0。控制电子状态的手段通常是电压,这也是电磁学中的一员。电场和磁场是光子的组成份子,但是单纯的电场或磁场不能自由移动,无法当成信息的载子。  我们习惯的电子载子操控方式是让电子在金属中流动,电子在金属传导的过程中不断地与金属原子晶格碰撞、产生热能,这就是焦耳加热(joule heating)。当摩尔定律走到原分子尺度时,金属线愈发细微—电阻更高,而芯片要传递的信息量更大,焦耳热的问题变得无所不在,从芯片内、芯片之间、系统内乃至于系统之间,任何信息的移动都生热量。如何降低发热、加强散热变成计算力进一步提升的主要挑战。寻求另外形式的载子以避免或降低焦耳热的产生势在必行。 光子技术也早已应用于读取/储存信息及传递信息。前者如以前的光盘,后者如现在于网络的光纤通讯。但是这与近代文明的核心—半导体有相当的距离。是否有办法整合光子入半导体的体制、承担信息载子的任务,成了目前的研发方向。  光子在传递的过程中理论上不会发热,而且传递信息速度比电子快了近100倍,这是它被考虑成另类信息载子的首要原因,这优势在线上光纤通讯中已得到充分的展示。  另外,光子的自由度极为丰富。目前用光子元件调制(modulate)光以编码(encode)光擕带信息的自由度有强度(intensity)、相位(phase)、频率、方向、波长等。但其实光还有时间段(time-bin)、轨道角动量(Orbital Angular Momentum;OAM)以及极化(polarization)等自由度可以用来编码信息。一个光子经光元件调制后最多可以有144个状态,这是不久前在光子的量子纠缠实验中所展示证明地。光可以携带巨量信息,但这也是目前将光纳入半导体信息处理体制的挑战之一。  光子还有一个劣势,就是光子和光子之间不会交互作用。本来用光子来控制、调制光子是最理想的状况,但是由于这个因素,对于光子的调制必须透过物质来进行。特别是对于光子主动元件(active devices,能改变光子的频率、波长、自我聚焦等效应)要以非线性光学材料(nonlinear optical materials)来组成。而这些非线性效应一般来说是作用的高端效应,作用较弱,需要以另外的手段来加强,这使得光子元件的尺寸一般都相当大。这是光子的优点所伴生的缺陷。  
迎接第三类半导体8寸晶圆新契机
每隔一段时间,笔者便会发表关于第三类半导体(氮化镓,碳化矽)的看法,毕竟这块园地是十几年来笔者长期关注、耕耘及使力的地方。十多年前在工研院时代,我们只知道第三类半导体,会是个时代及产业的趋势,并不全然地清楚实际应用的场景及何时会发生。经过这些年头,产业生态链逐渐完整,应用场景也日趋明朗,但是还尚未达到实际真正的引爆点。随着8寸晶圆的导入,是有机会引起第三类半导体大爆发。Yole在最近发表的市调报告,整体分离式功率元件(discrete power devices)市场规模在2022年达200亿美元,预估在2028年会超越330亿美元。这330亿美元的市场规模,矽基功率元件仍占大宗,但第三类半导体比例会到30%以上。碳化矽与氮化镓的比例约略是4:1,也就是碳化矽80亿,氮化镓20亿。在市场应用上,几年前流行一时的氮化镓60W快充电源转换器,只是个小众市场。最近关注的焦点在于电动车的电控及电池充电系统,第三类半导体尤其是碳化矽扮演不可或缺的角色。然而近来火红的AI算力中心的电源需求,第三类半导体的角色扮演,却比较少受到关注。不论是电动车或者AI算力中心,都需要大量的电流来驱动马达或者是芯片。为了避免过度的电流在传输上造成损耗,以及减少导线承载电流的截面积,直流高电压是个必然的趋势。电动车已经由直流48V走到400V,甚至于800V的直流高电压,AI算力中心也势必跟随电动车脚步,转向直流高电压。相较于矽基的功率元件(MOSFET、 IGBT),第三类半导体在相关高电压、大电流及切换频率的表现上都优于矽基元件。电动车关注的在于高电压及大电流,AI算力中心还须加上切换频率,因为在机柜内空间有限,提高切换频率可以增加功率密度。第三类半导体在供应链及应用端已逐渐成熟,市场何时会引爆?目前的重点在于价格。举一实际的案例,1个功率模块,若使用第三类半导体,其所需的元件数目可以是矽基元件的一半,但是遗憾的是整体的价格却还是矽基的2倍。所以第三类半导体若能积极地导入8寸晶圆的制造,使得价格上能降低30~50%,引爆点就有机会发生。氮化镓已经有公司导入8寸晶圆的制程,至于碳化矽到2025年将有IDM公司如英飞凌(Infineon)、安森美(Onsemi)、Wolfspeed、罗姆(Rohm)、意法半导体(STM)、博世(Bosch)、富士电机(Fuji Electric)等陆续导入8寸晶圆,这些公司也或多或少有8寸氮化镓晶圆的规划。即将引爆的契机已快来临,台湾的产业链该如何抓住呢?第三类半导体技术及8寸晶圆厂对台湾都不是问题,问题在于商业模式。无可讳言,目前矽基功率元件产品及技术领头的厂商,都是国际IDM的大厂,因为这是个元件设计与晶圆制造需要密切配合,才能创造出优异产品的产业。然而在台湾,我们是以设计及晶圆代工分业,为主要的诉求,因此我们的功率元件厂商,只能配合晶圆代工厂所提供的标准制程,或做有限度的优化,在量大的市场内作价格上的竞争。我们商业模式需要做些调整,整合是必要的,但不必然要走到IDM模式。晶圆代工厂,尤其是能提供第三类半导体8寸晶圆的厂商,可以朝虚拟整合(virtual integration)的方向来规划。也就是策略性地扶持少数几家元件设计公司,在制程条件上予以充分的配合,宛如两者是在同一个屋檐下工作,如此才有机会与国际IDM大厂一搏天下。要能做到虚拟整合,必定不会是件简单的事。我们已经失去矽基功率元件市场主导的机会,第三类半导体正准备引爆中,加上台湾优良的8寸晶圆经营的绩效,我们是有机会在国际的舞台上发光发热。 
妖姬的跳频
台湾中山科学研究院在无线通讯的跳频技术(Frequency Hopping)上有很深的着墨。这项技术能有效地防止敌人的无线电干扰。今日乌俄战争中,高档的无人空中载具都充分运用跳频技术,让士兵能线上操作无人机,不受干扰。很多人可能想像不到,跳频技术的发明人是电影《霸王妖姬》(Samson and Delilah)的女主角「妖姬」海蒂·拉玛(Hedy Lamarr, 1914~2000)。这部电影获得第23届奥斯卡金像奖。拉玛发明跳频技术的动机并非要运用于空中的飞机,而是水中的鱼雷(Torpedo)。第一款鱼雷是白头鱼雷(Whitehead Torpedo),制造于1866年,以其发明者怀海德(Robert Whitehead)命名。过去的漂移水雷必须被动等待敌舰撞上,而白头鱼雷内建动力,可主动攻击敌人目标。1895年的甲午战争,日本帝国海军以鱼雷重创清朝北洋舰队定远号战舰,证明了鱼雷以小博大的实际战果。日俄战争期间,俄罗斯帝国海军与日本帝国海军互相使用鱼雷攻击敌方舰艇。然而军事专家在日俄海战过程中发现,鱼雷实在是无甚作用。日俄共发射近600枚鱼雷,只击沉数艘船舰,其余80多艘船舰是被传统炮火击沉。特斯拉(Nikola Tesla;1856~1943)很早就发现鱼雷的缺点,向美国军方游说无线电导引鱼雷的可行性,但遭到拒绝。特斯拉的想法超前军方太多,而日俄战争证实特斯拉建议的必要性。美国海军恍然大悟,开始在第一次世界大战时研发无线电控制的鱼雷,称之为哈蒙德鱼雷(Hammond Torpedo)。1930年代的拉玛白天忙着拍电影,晚上则一直想点子,希望帮助盟军打赢第二次世界大战;她向休斯(Howard Hughes, Jr., 电影《钢铁人》中男主角爸爸的原型)提出飞机机翼的设计,并被休斯采用;她也构想出发泡片剂,让在前线作战的军人将片剂融入水中,就可以变成可乐畅饮。1940年,拉玛在宴会上遇到钢琴家安瑟(George Antheil, 1900~1959)。在钢琴边闲聊之际,拉玛忽然想到一个秘密通讯的方法,可发展出抵挡敌人电波干扰鱼雷的控制。当时的无线通讯使用固定频率,除了容易被拦截干扰外,还时常有断讯问题。拉玛看着安瑟手边的琴键,灵机一动:「就像弹奏钢琴的不同琴键一样,时常改变通讯的频率就可以达到防止敌人电波干扰的目的。」安瑟按照拉玛的想法,藉由他所熟悉的自动钢琴,开发出一个能够自动编译口令的模型,也就是今天我们熟悉的跳频技术。这项技术不但扩大通讯量,并且成功将通讯内容加密,并于1942年取得美国专利。拉玛将这个贡献提供给美国军方。军方不认为电影明星和钢琴家的奇思妙想能够真的实现,劝拉玛将发挥她其他方面的天分,利用她的美貌帮军方募款。拉玛只好将她伟大的发明搁置一旁,到处宣传,帮政府募到2,500万美元的战争债券。拉玛说:「希望和对未来的好奇心,似乎比保证的事物更好。这就是我的方式。未知的事物对我总是如此有吸引力……现在依然如此 (Hope and curiosity about the future seemed better than guarantees. That's the way I was. The unknown was always so attractive to me... and still is)。」
为摩尔定律续命—半导体先进封装技术
超微(AMD)CEO苏姿丰来台参与COMPUTEX 2024,期间有一次的公开演讲,提到她本人很讶异在台湾有这麽多人知道CoWoS(chip on wafer on substrate)技术,这在美国是不可能的事。事实上CoWoS一词是台积电张忠谋创始人一手钦定的,这名字取得真好,一眼就可以望文生义。就如同TSMC一般,很清楚让人知道葫芦里卖的是什麽药。CoWoS是一种先进的芯片垂直堆叠封装技术,也是延续摩尔定律继续前行的最重要利器。摩尔定律过去五十年中,所着重的在晶圆的平面上做不断地微缩。但是当微缩到了纳米等级,最终还是会遇到物理的极限,因此往垂直方向去堆叠是一个必然趋势—如同在人口密集的地方要盖高楼一般。约莫在二十年前,半导体技术尚未进入28纳米制程,研发人员就开始提出3D IC的概念,当时用了「 more than Moore」这个词,以对照摩尔定律的「more Moore」。然而要堆叠芯片技术上并不困难,但是在实际应用上却很难实现,就如同盖高楼,每一层的主结构必须是一致且贯穿的,才有可能一层一层的堆上去。所以只有存储器的芯片,因为是完全相同的架构,才有可能彼此堆叠,但当时的存储器芯片并没有这个需求。之后研究人员提出了矽穿孔中介层(through Si via interposer),也就是在中介层上方的平面放置多个芯片,因为中介层是使用半导体的制程,可以紧密结合这些芯片,并提供高密度的横向走线(RDL),芯片间信号可以走最短路径,提升芯片效能。这就是俗称的2.5D封装技术,此中介层就是CoWoS中的wafer。所以严格来说CoWoS是一个2.5D的封装技术。顺带一提的是这2.5D名词,最早是由日月光集团唐河明博士所提出。台积电是第一家将矽穿孔中介层量产的公司,这多亏蒋爸(蒋尚义)的主导与支持。但是推出来之后,却是叫好不叫座,乏人问津,也就是科技界常说的「solution looking for problems」。后来第一个使用CoWoS技术的是在2011年的Xilinx,将4个FPGA芯片紧密的并排再一起,并利用RDL彼此信号相连。因为CoWoS所费不赀,所以高单价的FPGA为了追求效能,才率先使用。就连苹果(Apple)手机内的AP芯片,至今还未使用CoWoS。接下来直到AI时代的来临,CoWoS才受到广泛的重视。NVIDIA是在2016年的P100 GPU开始使用CoWoS,主要用于与一旁的HBM存储器能紧密的信号相连。有趣的是,HBM是第一个实现3D的芯片堆叠,目前已经可以将12层、甚至16层DRAM堆叠在一起。NVIDIA近期所推出的Blackwell GPU,将2个GPU芯片,以几乎无缝地紧密相连,而中介层提供高密度的RDL以及连接凸块(bump),再次大幅提高信号传输速度,并减少功耗。此番CoWoS技术所带来的效益,几乎等同于将制程技术推进一个时代。然而,随着需要相连的芯片愈多,CoWoS中介层所需的面积就持续增加,不仅增加费用,而一片12寸大的晶圆能提供的数目也势必减少。玻璃基板当作晶圆中介层的想法就应运而生。首先,玻璃基板够大(5.5代玻璃面板是1.3米 x 1.5米),另外玻璃基板够平整,可以制作出高密度的RDL,同时对于高速的信号具有更低的传输损耗。现阶段如果能顺利解决玻璃基板钻孔的问题,将来非常有机会提供一个低成本、高效能的中介层。台积电为此也适时推出经济版的CoWoS-L(local Si),中介层是使用封装业常用的制模(molding)技术。模的中介层内可内埋local Si interconnect(LSI)芯片,提供所需要高密度的RDL,同时也可以内埋其他的主被动元件以及芯片。不过要完成薄、大面积且不碎裂的制模,在工艺上是很大的挑战。CoWoS中的芯片及晶圆中介层会被台积电所牢牢地绑住,外人难以越雷池,因为这牵涉到对终端客户的承诺。至于substrate高速载板,则有机会被多家供应商所分食,而高速载板内有更多的空间,整合内埋所需要的元件。半导体先进封装技术,尤其是CoWoS,未来在延续摩尔定律道路上扮演不可或缺的角色。现在发生的是AI带来的需求,未来在各领域小芯片(chiplet)的整合,都需要这些技术,而且会更多元及多样。在这条道路上,除了制程技术及IC设计的专长外,需要材料力学、结构力学以及散热机制等专长的人共同参与。当more Moore 「山穷水尽疑无路」时,more than Moore提供「柳暗花明又一村」,这一村将带给半导体产业至少再20年的荣景。
不学AI不会输在起跑点?
人工智能(AI)对城市发展有着深远的影响,一般市民和地方产业应该了解如何运用AI。在新竹县政府和新竹县议会指导下,新竹县工业会支持成立了AI产业发展联盟。希望能全面提升新竹县县民、企业和公部门对AI产业转型的认识。联盟成立启动仪式上,所有的音乐、影片和开场歌曲都是由AI数码生成,参与的民众对于AI的发展潜力和表现感到既惊艳又大开眼界。我在大会演讲指出,AI技术发展迅速且多元,平均每两至三个星期就有新技术产出。因此,我希望集结联盟的力量,帮助大家找到产业所需的AI技术,并降低AI机器设备的成本。为了吸引听众的注意力,我在演讲的投影片上写道:「不学AI不会输在起跑点,而是会死在起跑点。」这句话引发了观众的哄堂大笑,但也让大家认真思索AI对他们个人的影响。一般群众分不清判别式(Discriminative)AI和生成式(Generative)AI,因此我以自己的研究为例,说明两者的区别。判别式AI根据输入数据进行分类或标签,经过训练后能识别每个类别特有的模式和特徵,并根据这些模式进行预测。而生成式AI则着重于构建能生成与训练数据相似的新数据的模型,这些模型学习训练数据的潜在概率分布,并从中生成新样本。了解不同AI技术本质,就更清楚如何运用这些技术。新竹县AI产业发展联盟将致力于解决县内重要议题,例如提升新竹县的数码治理,以及帮助中小企业理解并促成AI转型。未来,联盟将通过举办讲座、企业参访、研讨会等活动,甚至是个别企业谘询和技术小聚,来媒合技术与需求,同时协助企业争取中央的计划补助。新竹县政府拼经济是首要工作,而AI更是重要的发展项目,公部门的科技治理应时时贴近民意,透过AI的智能服务,让民众生活更加美好。今年暑期7月份的AI课程在短短不到一周的时间内便报名爆满。未来将针对不同产业需求,加开相关课程,例如劳工如何运用AI科技、如何通过AI改善愈来愈壅塞的交通问题等。甚至将引进认证课程,让企业能深入了解AI转型的技术。欢迎有兴趣的企业夥伴一同加入,共同努力发展先进的县市智能应用。
雷达的趣闻
乌克兰与俄罗斯战争中使用的雷达技术玲琅满目。这些技术涉及监视雷达、防空雷达,以及由双方部署的战场监视系统。这些雷达系统用于侦测飞机、导弹或地面活动的系统。这些雷达技术是哪些厉害人物发明的?麻省理工学院辐射实验室在第二次世界大战时期将电磁波的研究发挥得淋漓尽致,对于雷达(Radar)的发展有不可磨灭的贡献,也产生出多位诺贝尔奖得主,包括创造「核磁共振」这个名词的拉比 (Isidor Isaac Rabi, 1898~1988), 在1937年确实验证原子核的角动量,而于1944年获颁诺贝尔物理奖。薄赛尔 (Edward Purcell, 1912~1997) 与布洛赫 (Felix Bloch, 1905~1983)因发现在外加磁场下,所有物质只要是有奇数个质子或中子皆可以形成共振现象,能发射特定射频信号,而在1952年荣获诺贝尔物理奖。这项发现早期应用在化学物质的检测上。薄赛尔得诺贝尔奖时好像只有发表6篇论文。阿瓦雷兹 (L.W. Alvarez, 1911~1988) 因制成第一部质子直线加速器,以及对基本粒子研究发展的贡献,而荣获诺贝尔物理奖。冉济(Norman F. Ramsey, 1915~2011) 发展出分离的震荡场方法及其在氢迈射和其他原子钟上的应用。第二次世界大战期间列强的战争需求使得先进科学技术得以快速的发展,于是雷达就出现了。大战期间,德国空军老是跨海轰炸伦敦,让英国烦不胜烦,急需一种探测空中金属物体的技术,能在反空袭战中帮助查找德国飞机。雷达的最早构想来自于沃森瓦爵士 (Sr. Robert Watson-Watt, 1892~1973),希望与美国携手合作,共同打击德军。于是上述这群伟大科学家的电磁波研究集中火力,在战争时期发展出地对空、空对地搜索轰炸、空对空截击火控,以及敌我识别功能的雷达技术,德军闻之丧胆。战后雷达有多项民生应用。例如微波炉(所谓的「雷达烤箱」)深受家庭主妇喜爱;雷达测速器则成为汽车超速者的克星。沃森瓦开车超速曾被雷达测速器抓到罚钱,对于自己推动这项发明的应用,反让他自食恶果,啼笑皆非。