1万亿个晶体管的半导体新纪元
两周前SEMICON Taiwan在台北举行,这个年度盛会聚集全球各地重要的半导体厂商及菁英,共同探讨半导体未来的新技术及产业趋势,这其中最吸睛是对于未来两个「万亿」(trillion)的预测。第一个万亿是大家比较耳熟能详的,半导体的市场规模,会由现在的6,000多亿美元,成长到2030年的破万亿美元。台湾2023年的GDP是7,551亿美元。第二个会破万亿的是单一封装芯片的晶体管数目会超越1万亿,目前的纪录是NVIDIA Blackwell架构GPU内涵1,040亿个晶体管,使用台积电4纳米的制程。所以要破万亿,还需要10倍的成长。在1980年代,我们所探讨单一芯片晶体管的数目是百万级(million),而2000年初来到10亿级(billion),又过了20年现在是万亿级(trillion)。10倍的成长在半导体界是司空见惯不足为奇,但是以10倍速度的成长且经历过50年,几乎所有可能的方法及创新的技术都用到了极限,所以万亿级晶体管的最后一里路将会是备极艰辛。位于比利时的Imec成立40年,是全球半导体相关先进技术最重要的研究机构,举凡FinFET、EUV、nano-sheet FET等,都是其领先提出并且实现。由于其中立的立场,以及拥有先进设备及优越的人才,吸引全球大厂进驻与其合作,因此被称为是半导体界的瑞士,所以由Imec来说明万亿级晶体管的实现是最恰当不过的。Imec在会场自家举办的论坛中提出CMOS 2.0的概念,也就是实现万亿级晶体管所需的创新思维及技术。这除了要持续微缩晶体管的尺寸,也就是more Moore;另外还需要先进的封装技术来配合,这就是more than Moore了。台积电已经量产3纳米制程,即将进入的2纳米,晶体管的架构会由FinFET进入到GAA(gate all around)也就是nano-sheet晶体管。但是要持续进入到1纳米以下,CMOS晶体管的架构要做结构性改变。我们都知道CMOS(complementary MOS)是由nMOS及pMOS组合而成,由最原始的平面式(planar) CMOS到FinFET以至于GAA,2个nMOS及pMOS一直都是并排在同一平面。但是到了1纳米以下,为了更进一步的微缩,nMOS及pMOS必须要上下堆叠而非并排。也因为是上下堆叠可视为是一个晶体管,所以被称为是CFET。可以用堆叠方法做出1个CFET,同样的方法就可以做出2个以上CFET的堆叠,这样万亿级晶体管的晶圆不就可以实现了?其实不然,这还要许多尖端工艺来配合。要做到1纳米等级的曝光显影,需要使用高数值孔径(NA=0.55)的EUV,此EUV造价不斐需要3亿美元。另外,上万亿个晶体管的耗电会轻易地超过1,000瓦,为了节省电力的消耗,研究人员提出晶圆背面供电的方法。现行的晶圆不论信号或者电源都是由晶圆上方所提供,所以电力需要经过十几层的金属往下,才会到达最下方需要电力来运作的晶体管。这就如同提了一桶水,走山路到到山顶去浇水,山路是愈走愈窄,好不容易到了山顶,可能只剩下半桶的水。直接由晶圆背面供电,是个立竿见影节省电力消耗的良方。台积电在A16制程(1.6纳米)将开始使用此背面供电技术,但是该如何实现?这需要晶圆键结技术(wafer to wafer bonding),包括bumpless技术。也就是将提供背面供电的电路制作在另一片晶圆上,然后与磨薄后主芯片的背面对准并键结,使两片晶圆结合为一体,这个程序需要在真空下加温及加机械力,而晶圆间的键结是依赖凡德瓦尔力(van der Waals force)来完成。这个技术在30多年前,我在美国当研究生时就已经发展,当时隔壁实验室正从事MEMS的研究,需要制作一个微小的空腔,因此手工组装一套半导体晶圆键结设备。没想到当初这套技术,如今成为实现万亿级晶体管的利器。既使有了更省电的CFET及晶圆背面供电技术,然而上万亿个晶体管仍旧会产生相当的热,需要从有限的面积内带走。Imec研究人员制作液态冷却的微流道,将冷液体引入到晶圆表面的热点,而将热带走的热液体,由不同的流道引出,并在外部做热交换。此微流道相当的复杂,需要将冷热液体分流,这很难用传统的机械加工来完成,而3D打印技术克服这个困难。半导体的晶圆技术总是不断地,在面对问题及解决问题的循环中匍匐前进。过往多依赖晶体管结构及晶圆制作技术来完成,现今先进封装甚至散热技术会扮演愈来愈重要的角色。此次SEMICON Taiwan所揭櫫的两个万亿的目标,我们相信是会达成的。