台灣是「天選之島」
1971年,英特爾(Intel)推出型號為4004的微處理器,我認為那是微電腦時代的開端,而台灣在不久之後推動的RCA計畫,培養了台灣第一代的產業菁英,我常說,那個時代的英雄是成群結隊而來。他們成為台積電、聯電、華邦、旺宏、聯發科、台灣光罩這些知名半導體業的創辦人,也在IC設計、封測、光罩等不同的領域共建一個綿密、有效率的產業生態系。1980年代,以宏碁、神通為首的個人電腦產業開始開枝散葉,演化自計算器的仁寶、廣達、英業達也不多讓,而1992年康柏降價,原本認為將會受到重擊的台灣IBM相容電腦業,卻成了全球最重要的供應來源。1995~2000年的大搬遷潮,台系NB廠從東莞、深圳往長三角、成都與重慶移動的過程,也是產業變革的經典。台灣產業沒有被弱化,反倒借力使力,達到今天將近1兆美元的規模。過去半個世紀的成就,有台灣人的努力,也有很多先天的優勢與許多僥倖。1970年代,台灣退出聯合國,與美日斷交,嬰兒潮世代大量湧進社會,在那個沒有工研院、科學園區的時代,蔡明介、宋恭源等台灣第一代的創業家都在高雄加工出口區工作。伴隨嬰兒潮而來的還有石油危機、通貨膨脹,但半導體產業的萌芽,無疑是給台灣帶來一絲希望。經過半個世紀的努力,半導體、ICT供應鏈與龐大的運籌體系(空運),共同建構了一個保護台灣的天然屏障。從PC、手機、物聯網到電動車,都帶給半導體源源不斷的商機,但下一個階段台灣還可以如此幸運嗎?2008年北京奧運之後,至2019年川普發動美中貿易大戰之前,這10年可以說是中國的「黃金十年」。智慧型手機的大潮,帶動了智慧應用與行動商機,中國的獨角獸企業,最多時佔有全球的4分之1,是少數能與美系獨角獸抗衡的重量級大國。相較於中國意氣風發,台系廠商卻在美中壓力下不知如何是好?2019年2月,川普政府在白宮網頁貼出美國要掌握「5G、人工智慧、量子技術、先進製造」的競爭優勢。2021年拜登接任之後,在白宮再度宣示,美國要有意義地掌握半導體、車用電池、藥品、稀土的供應鏈。美國的宣示是向中國下戰帖,但從台灣的角度觀察,既有危機,也有商機。「商機」在於全世界的供應鏈一分為二,崛起的紅色供應鏈被關在中國,台灣成為最重要的選項;「危機」則是在於全球化的美好時代飄然遠去,去全球化的過程,將疊加經營成本,及台灣面對國際局勢的因應能力。下一個時代的英雄,也會成群結隊而來,還是美好的仗打過了,我們順其自然,甚至吃老本、過好日子呢?
CES 2024展前瞭望:各類AI百花齊放、落地應用關鍵一年
2024年1月4日,CES主辦單位美國消費者科技協會發布名為「What Not to Miss at CES 2024」的新聞稿,揭露CES 2024 四大科技主軸,列名首位的是人工智慧(AI),若檢視2023年年初同一時間的會前新聞稿,所列舉的科技主軸分別是「Automotive and Mobility」、「Digital Health」、「Sustainability」、「Web3 and Metaverse」、「Human Security for All」,AI根本未列入其內。如此正好反應出由ChatGPT所點燃、突如其來的科技新浪潮,其勢頭是多麼的「兇猛」,該如何看待2024年的AI發展呢?疊加在過去AI基礎上發展的生成式AI回頭翻閱我過去的演講簡報檔案,2017年就在談「AI的下一步」,探討從雲端延伸到邊緣的趨勢,這是當時的熱門研討會主題,同樣的議題在2023年又成為顯學,預期也是2024年的發展熱點,這6~7年的時間發生什麼樣的改變?若就終端裝置來看,在手機領域,高通(Qualcomm)在2015年發表的Snapdragon 820,晶片內部便配置Hexagon 680 DSP,能執行1,024位元的向量運算,可作為AI推論引擎之用;在PC領域,英特爾(Intel)於2017年11月發布的Gemini Lake處理器,搭載第一代GNA(Gaussian & Neural Accelerator),作為語音處理與噪音抑制等背景工作負載的低功耗AI加速器。就邊緣運算來看,在生成式AI這波熱潮前,包括雲端、伺服器、網通、產業電腦等業者,都已提供邊緣運算解決方案,用以收集與處理應用場域端的數據,尤其這幾年5G的普及與2B通訊服務市場重要性的提升,更推波助瀾邊緣運算的發展。在演算法與應用方面,傳統的機器學習如迴歸模型或SVM(Support Vector Machine)已普及多年,近10年主要基於卷積神經網路(Convolutional Neural Network;CNN)的特徵萃取/物件辨識技術興起,從人臉辨識、人員管理、瑕疵檢測、醫學影像判讀、到自動駕駛與交通監控等各類應用均已逐步普及。在AI導入的效益上,根據McKinsey 2022年12月發布的AI Survey報告〈The state of AI in 2022—and a half decade in review〉,在其受訪企業中,導入AI的比重從2017年的20%,提高到2022年的50%;在效益上,2021年調查結果顯示,降低成本最明顯的領域來自供應鏈管理,有52%的受訪企業表示受惠,而促進業績成長的最明顯領域來自行銷/銷售領域及產品/服務開發領域,各有70%的受訪者表示有實質效益。2024年的AI發展,並非建立全新的基礎建設與生態系,而是在此已具備雲端—邊緣—終端協同發展及各類落地應用的基礎上,再進一步推動以大型語言模型(LLM)為主軸之生成式AI的應用落地。生成式AI發展新態勢在AI發展上,有幾個從2023年延續至今方興未艾的趨勢。從整體生態系來看,LLM軟體與服務堆疊(stack)可分為3層,底層是各大模型及其集散平台(如GitHub與HuggingFace);其上一層是各類LLM開發工具,如prompt工程與管理工具;最上層是包括文章寫作助理、程式撰寫助理、內容與創意生成、搜尋助理等終端應用程式。ChatGPT帶動基於LLM之生態系的蓬勃發展,接下來的發展應會類似iOS與Andorid生態系的發展般,Open AI/微軟(Microsoft)與Google會各有其生態系,而現以Meta LLaMA系列為主力的開源社群也會有其生態系,從2023年11月Open AI開發者大會推出GPT Store及客製化GPT「GPTs」,及2023年12月Meta、IBM與英特爾、超微(AMD)及Linux等公司與機構合組開源AI聯盟,已可窺見升溫的生態系競逐態勢。從模型來看,可見快速走向多元分化的趨勢,這包括針對泛用需求或特定工作任務、針對雲端/邊緣/終端不同場景的模型、或針對不同垂直領域或語系進一步強化等態勢。接下來這些在基礎模型上百花齊放的衍生模型,甚至可能如AppStore般發展出Model Store的商業模式。例子之一,是基於Meta 開源的LLaMA 2,已衍生出包括中研院、台智雲及多個中國大陸業者與機構進行中文優化的版本。例子二是華為雲2023年7月發布針對產業需求的盤古大模型三代,該系列模型包括「5+N+X」3層架構,最底的L0層包括自然語言、視覺、多模態、預測、科學計算等五個基礎大模型;中間的L1層包括政務、金融、製造、製藥、礦冶、鐵路、氣象等N個產業大模型;最上的L2層則是X個細化場景模型,例如輸送帶異物檢測、颱風路徑預測等。另一趨勢是生成式AI已逐漸從大語言模型朝向多模態模型發展。過去的多模態大模型作法是以既有的語言模型或是經預訓練可提取語意特徵的圖像模型為基礎,再使用多模態訓練數據增加新的網路層訓練,建立多模態模型。例如GPT-4除文字外,也可接受圖像輸入便是採此作法。Google在2023年12月所發布的Gemini,則是從一開始便使用多模態數據進行聯合訓練所建立的大模型,可無縫理解與推論各種模態的輸入內容並進行輸出,無論是文字、程式碼、聲音、圖像、或視訊內容。當大模型成為各家網路/雲端巨擘及眾多新創的主要戰場時,可預見接下來會有更多原生多模態模型問世。科技硬體業最關心的則是模型小型化與AI on Device的趨勢。Meta 於2023年7月公布的LLaMA 2除了70B版本外,也包括已可搭載到終端裝置的13B與7B兩版本。法國於2023年5月成立的獨角獸新創Mistral AI,在2023年9月發布開源的Mistral 7B,主打僅7.3B的參數模型,宣稱在所有基準測試結果優於Llama 2 13B,而Google的Gemini Nano版本則是先「蒸餾」大模型,然後進行4-bit 量化的微型模型,針對低記憶體容量與高記憶體容量終端裝置,區分為1.8B與3.25B兩個版本,且預告將首先搭載於Google的Pixel 8 Pro手機上。AI on Device的理想是走向AI Everywhere / AI on Every Device,2024年可說是生成式AI落地到各類終端的首年,全球智慧型手機銷售的高峰在2017年,約達14.2億支,而PC銷售高峰在2011年,約有3.6億台規模。近年除因疫情紅利,在2020~2021年創下高成長銷售佳績外,其餘時間都處於市場成熟幾無成長的狀況,AI PC與AI手機成為寄望所在。在物聯網裝置上,先前tinyML基金會定義tinyML規格,希望在MCU平台上,使用mW等級以下的超低功耗,在Always-on及電池供電的邊緣裝置執行邊緣運算。如今包括像是智慧音響、汽車智慧座艙,或是各類機器人等,也都因生成式AI帶來功能與應用的提升,有機會進一步刺激市場需求。既有硬體產品外,也誕生一些基於生成式AI的新興硬體產品,如由美國新創業者Humane所推出的無螢幕穿戴式AI裝置AI Pin、另一家美國新創Rewind AI推出掛脖的Rewind Pendant裝置。在台灣,募資平台上也有Plaud Note智慧錄音卡的項目,運用ChatGPT,將錄音內容轉成逐字稿並整理重點。總之,2024年將是生成式AI在過去的機器學習/深度學習發展基礎上,進一步加成與匯流的一年,也是各種硬體、軟體與服務大規模教育市場與測試市場水溫的一年,著重在建立早期採用者的族群與市場規模,是生態系演化、業者高速競合,期待、宣揚、亮點與失落交雜的精彩一年!
貿易戰中,美國的角色
「全球化時代」應該從1960年代算起,日本與亞洲四小龍以雁行理論亦步亦趨地發展工業,創造了人類歷史上少見的經濟奇蹟,而1990年蘇聯解體之後,2008年北京舉辦奧運之前,則可以說是「全球化」最美好的時代。2008年,北京舉辦奧運的大手筆震驚了全世界。2009年時,中國GDP超越日本,本土市場開始養出超重量級的獨角獸,阿里巴巴、騰訊、華為成為全球吹捧的對象,也開始以「高鐵」為核心發展基礎建設,到2023年為止,超過4萬公里的高鐵成為近代史的奇蹟。中國人志得意滿,開始高唱「太平洋大到可以容納中美兩國」,甚至試著把南海、東海、黃海變成中國可以控制的內海。原本對中國發展採取樂觀其成態度的美國,開始重新思考美中關係。形之,敵必從之世界級的大國,都以霸權心態面對國際關係(或者分工關係),美日之間的廣場協議、半導體協議,打破傳統的框架,也讓台韓有機可乘。現在新的國際秩序正在形成,我們可以從供應端、需求端看到美中貿易大戰中,美國的角色,也可以從日本政治人物的因應方案中,試著參酌、發展出台灣的國家戰略。日本前經濟大臣甘利明說,日本要從供給端理解半導體產業的影響力,而台灣正好是真正擁有供給端優勢的國家,但社會、媒體、政治人物真的理解「供給端」可以帶來的優勢與效益嗎?銳卒勿攻,餌兵勿食網通、伺服器、高階晶片、半導體設備,甚至未來的車聯網、電動車都將是「木馬屠城」的載具、通路,台灣如何理解與選擇國家戰略?美國商務部堅持NVIDIA晶片必須受到限制,NVIDIA設計專為中國市場需求的晶片真的可行嗎?還是僅僅是向資本市場、美國政府交代的工作呢?對台灣而言,從一開始的代工,進化到供應鏈,以及未來整套的價值鏈,演化的過程豐富多元,也充滿著風險,如何激勵優秀的人才繼續奉獻。我們明白「風行草偃」的道理,如果在上位者言不及義,如何期待社會上行下效呢?如果社會、媒體不討論這些事情,政治領袖仍然會一如既往的拜廟,空談土地糾紛、ECFA的是與非!
「矽紀元」是網路大航海時代的新起點
1492年,趕走回教徒摩爾人的西班牙伊莎貝拉女王支持哥倫布,發現了新大陸,從此改變了世界,而這也是大航海時代開始的關鍵時刻。如果我們以更長遠的眼光觀察世界的改變,1970年初開始的半導體時代,半個世紀以來經歷過萌芽、個人電腦、智慧型手機的階段商機,現在才真正邁入萬物聯網、無縫接軌的新時代。我們看到大量連動的數據,需要快速運算的晶片,也需要超巨量儲存能力的記憶體,一個被描述為「十倍速的時代」其實現在才剛剛要開始。幾何級數的成長,迅雷不及掩耳Netflix用41個月找到第100萬名用戶,Facebook用了10個月,但ChatGPT僅僅用了5天。我們看到了幾何級數成長的商機,贏家全拿的時代似乎已經到臨。但除了亞馬遜(Amazon)、蘋果(Apple)、NVIDIA、微軟(Microsoft)、Google這些大贏家之外,台灣憑藉不可或缺的「硬功夫」,成為以軟實力取勝的企業之外,最成功的典範。網路事業可以速成,但建構一個生產體系,卻需要龐大的勞工群,以及上游的晶片、設計、系統整合的硬功夫。台灣躬逢其盛,也無可替代,這也是世界賦予台灣的天賦與天命。矩陣思維:競合並存,而且「合」多於競只是一片大好的情勢中,也有很多細微的改變。過去IC設計公司、零件製造廠做出產品,交給零件通路商,賣給承接PC、手機品牌商OEM大訂單的鴻海、和碩、緯創、廣達、英業達。這是一條鞭的線性供應鏈,但現在生產面板的友達想發展數位看板,與佳世達之間的關係是競還是合?佳世達以「大艦隊」模式籌組控股集團,往更寬廣的路徑走,也更積極布局汽車的智慧座艙等新商機。台灣電子六哥的毛利率都維持在6~8%,毛利不高,意味著不能犯錯。但不談台積電獨佔性的利潤率,台達電30%、研華40%上下的毛利,意味著有多樣性的選擇,這是起步較早的台灣電子業無可替代的競爭優勢。產業結構丕變,沒有人可以「靜觀其變」。在變化的過程中,開放型的戰略是共同的走向,而面向世界時,台灣的經濟規模、量產體系、資本優勢與管理經驗,都讓台灣成為「無害的夥伴」。取用於國,因糧於敵,善用台灣本土優勢的台商,短期內仍然可以呼風喚雨。當我們對於量產製造的觀念從最早的「代工」,進化到「供應鏈」,現在又往「價值鏈」發展時,台灣贏在起跑點,也站在制高點上。
《決勝矽紀元》帶來哪些新觀點?
《決勝矽紀元》這本書寫的不是產業領袖的英雄事蹟,或是枝微末節的產業實錄,而是探索產業關鍵拐點的重要嘗試。半導體產業從1970年代萌芽至今已經有半個世紀,起初半導體只是大企業為了強化系統產品功能而研發的配套零件,真正形成產業則應該從矽谷的英特爾(Intel)算起。之後,英特爾與微軟(Microsoft)結合所建立的個人電腦產業平台,才真正讓半導體產業有一個具規模的大舞台。英特爾的微處理器、美日韓接續發展的記憶體都是讓這個產業逐步演化的重要過程。2007年iPhone上市之後,雙向傳輸數據的智慧型手機是另一個關鍵性的轉折點。中國善用龐大的國內市場,不僅讓各種智慧應用在中國市場有了深化、優化的場域,也讓中國8個手機品牌進入全球Top 10之林。伴隨著手機產業的成長,紅色供應鏈受到矚目,台廠戰戰兢兢,也惶惶不可終日,半導體成為台灣科技業的最後一條防線。但對西方大國而言,台灣不僅是防線,也可能是中國突破封鎖的破口。我們如何理解技術掛帥的科技產業,在技術引導的時代慢慢演化到應用驅動新時代時的關鍵理念呢?從PC、手機到物聯網的產業演化在個人電腦與手機主導的時代裡,品牌商決定了技術規格,由上而下(Top-down)的決策過程是技術掛帥的時代。進入萬物聯網的時代時,除了資料中心高速運算的晶片、大量儲存資料的記憶體之外,應用驅動的邊緣運算,將帶來多軌生產與區域分工的大趨勢,而在地價值也將成為許多企業爭取的合作對象。我們同意,從全球化到「去全球化」,關鍵原因是美中貿易大戰,但產業生態的變革也是推波助瀾的重要力量。上駟對下駟台灣如何在半導體這個全球矚目的行業中稱孤道寡,《孫子兵法》中「以正合,以奇勝」以及「其勢險,其節短」的道理,正好可以說明台灣在過去半世紀的發展經驗中,既有幸運,也有努力的成功關鍵。我常說:「不要仰賴靈光一閃的好點子」,唯有長期積累,才會有出奇制勝的契機。其次,台灣小、沒有自然資源,外圍又是強敵環伺,1970年代、1980年代的台灣更是驚濤駭浪,讓台灣人口密集、土地資源稀缺的缺點,翻轉為台灣發展產業的優點。「勢」有實,有虛,虛實成勢,伺機而動我們都知道,國家、社會、企業,乃至於個人的發展都要仰賴有利的形勢。「形」是本體,「勢」有實、有虛,激水之疾至於漂石者,勢也。意思是本身的條件夠好,仍得善用時勢,掌握對的時機,並在正確的時刻扣下扳機,自然可以有所成。水流之所以能漂動石塊,關鍵在於有快有慢,速度不同,才會出現重力加速度,這是「勢」的概念。台灣半個世紀以來,能成功發展出舉世稱羨的半導體產業,關鍵在於本身具備一定的條件,並在正確的時刻,以精確的方法發展高科技產業,而國際的時勢也有利於台灣。當台灣建設科學園區、投資工研院,發展以台積電為首的半導體產業聚落時,中國才剛剛從文化大革命的時代醒來。在「虛實成勢,伺機而動」的背景下,台灣的成就,有自己的努力,也有很多其他國家沒有的幸運。
新時代的開端:《決勝矽紀元》
「2030」將是矽紀元的開端,從應用面看,電動車、車聯網、人工智慧,正以幾何級數的速度往前推進。從供應端看,在美中貿易大戰的背景下,工業國家都想加碼投資半導體,擁有產業的國家將半導體視為「保育類」產業,但也得在世界霸權爭奪的大環境下,半推半就地面對2025年起,新工廠逐步完工的成本與競爭壓力。新廠從接單生產,進入熟成階段,再進行擴廠布局,真正會改變全球供應鏈結構的時間,應該在2030年左右。台積電能持盈保泰嗎?三星電子(Samsung Electronics)後來居上的策略是什麼?英特爾(Intel)高調地與美國政府唱和,去全球化、產業補貼成為贏得賽局的關鍵要素。帶領英國度過二戰艱困期的首相邱吉爾說:「英國的國家戰略是避免低地國家被毆陸大國所佔領」。用白話文講就是「不能讓荷蘭、比利時被德國、俄羅斯所佔領」。在新的時代,重要的工業大國需要新的國家產業戰略,而半導體無疑是重中之重。台灣是第一島鏈,也是科技島鏈,我們就坐在海景第一排觀察世界的改變,而台灣ICT產業的供應鏈,也是當中不可忽視的環節。2030年時,全球電動車的年銷售量將達3,000萬輛以上。現在中國生產的電動車佔了全球6成,能收集各種數據的電動車,會是中國滲透西方市場的尖兵,甚至是重演《木馬屠城記》的載具或劇本嗎?美國、德國、日本的傳統車廠將面對供應鏈重整,但不僅尖端晶片可能出現供需失衡的跛腳問題,沒有台系供應鏈的支撐,東協南亞國家能建構本土的ICT供應鏈嗎?台灣成了許多國家的夥伴,但同時也是後顧之憂,我更強調台灣在全球產經世界中的「定錨」價值。台灣安定了,世界就安定了;來台訪問的日本國會議員,也曾是經濟政策大臣的甘利明說,供給端比需求端更重要!印度人說,2035年時,印度39歲以下的年輕人將比中國多出3.8億人,您認為未來的元宇宙商機,是美國人、中國人,還是印度人所主導的呢?儘管因為智慧製造帶來的效益,台廠的員工人數不斷減少,但台商仍需要工程師、工人,也需要與在地的企業共創價值。沒有錯,分散型的生產體系可以紓解產業過度集中台灣、南韓,甚至中國的風險。但過度的投資會給半導體產業帶來衝擊嗎?危機入市的道理我們都懂,但會不會像黃仁勳說:「可能在空蕩蕩的晶圓廠內游泳」?特別謝謝《天下雜誌》的邀請,天下雜誌過去發行《晶片戰爭》,現在希望我能以亞洲的觀點,探索未來的半導體產業。我們以2030年為期,探索2030年之前,這個世界的幾個重要變革。《決勝矽紀元》立即訂
半導體材料開發新典範(二)
從AlphaGo問世迄今的近10年間,機器學習中的各式神經網路(neural networks)開始逐漸被應用到各種工商業的場景。與材料開發相關的應用之一就是用以優化材料製作過程,這個應用已經進入產業實作有一段時間了。 用機器學習中各種神經網路執行材料製程參數的優化,本是件很辛苦的事。人工智慧素有高維度的詛咒(curse of high dimensionality),亦即要優化的問題中參數數目的增加,其所需的算力必須以指數的形式增加。但是相較於以實驗來進行製程參數最佳化,機器學習仍然享有絕對的優勢。另外,即使不能達到全域最佳化(global optimization),使用可以大幅節省計算資源的局部最佳化(local optimization)也許就足以滿足應用的需求。 最近發表於《自然》期刊的文章〈Scaling deep learning in materials discovery〉,揭示運用機器學習於發現材料方法的量子大躍進。 過去使用計算所建立的非有機晶體資料庫如Materials Project、Open Quantum Materials Database、AFLOWLIB、和NOMAD利用前述的第一原理計算和簡單的原子替代方法,找到4.8萬個穩定的晶體結構,新的方法則將此數目再推進一個數量級! 它使用的方法叫GNoME(Graph Network for Materials Exploration)。首先,它建立系統性的方法來產生新結構:考慮晶格結構對稱性,以及隨機產生的結構。 然後將圖像神經網路(Graphic Neural Network;GNN)用上述的那些資料庫中的資料來訓練,改善結構的模型,用以過濾上述產生的新結構。這些挑選過的新結構再以第一原理來計算其能量,判別此結構是否穩定。 經過上述的反覆訓練、篩選、計算、再篩選的程序,GNoME總共找到42.1萬個結構,比之前單純只用第一原理計算及簡單原子替代方法建立的資料總比數4.8萬足足高了一位數量級。而且資料量愈大,能量預測愈準確—以指數成長的方式進步。 這個方法還有新結構的預測能力。用以訓練GNoME的資料最多只有4種原子所組成的結構,但是在沒有任何訓練資料的情況下,它也可以預測出5、6個單一原子組成的結構,而且與實驗結果對照是符合的。 這些與半導體材料的發展有什麼關係?以目前1奈米電晶體的主要候選CMOS架構為例,目前計劃以MoS2的二維材料來做通道(channel)材料,這是在工程均衡的考量下從過去已知的1,000多種二維材料中挑選出來的。但是經過GNoME的搜尋後,存在穩定結構的二維材料現在有5.2萬種,也提高一個數量級。負責前沿電晶體結構的研發工程師要不要重新再檢視一下這個新增的資料庫、看一看是否有新的材料可以建構性能更好的電晶體? 結合第一原理計算與圖像神經網路兩種工具,以計算方式尋找新材料是至今為止最先進的、最有效的的材料發現方式。於半導體的應用中,其實材料的形成方式也都使用半導體設備。以前面所述的二維材料為例,原子層沉積(Atomic Layer Deposition;ALD)是常用設備。也就是說,半導體製程就是材料製程,研發與量產一體化是很自然的措施。將半導體相關材料研發納入半導體廠的核心能力,有助於半導體廠整合更多價值增長環節進入晶圓廠,有利於維持長期持續成長的動力。
教育型機器人的作中學
科幻小說作家Isaac Asimov創造「機器人學」(Robotics)這個詞彙。他創作9篇短篇小說,收錄於《我,機器人》(I, Robot),描繪「正電子」(positronic)的發展,並探討這項技術的道德含義。正電子類似人類,是擁有人工智慧(AI)形式的機器人。機器人要模擬人類行為,很自然地會與AI結合,接下來又會衍伸出許多人文的議題。我演講時會問聽眾: 「人類和機器人結婚有意義嗎?」Asimov「機器人學」的框架極為宏大,包括機械工程學、資通訊電機學、心理學、社會學,甚至人類學。因此機器人相關的教育專題會成為STEM教育的很好實踐方式。STEM是一項跨領域、科目整合的教學方式,核心著重於科學(Science)、 科技(Technology)、工程(Engineering)及數學(Math),後續也延伸包含藝術(Art)。2023年12月,台灣教育界人士對108課綱的做法有許多爭議。我認為,解決方案是融合式的減法教育,其實就是STEM的精神。我更強調「作中學」的重要性,其中的實踐方式是讓學生進行融合不同學科的實作專題。很多人要我舉出實例,當中一例是我發展的EduTalk平台。另一個例子則是在新竹縣亞太美國學校舉行亞太區的教育型機器人競賽(VEX robotics signature events)。該賽事由機器人教育與競賽基金會(The Robotics Education & Competition Foundation) 主辦。這是全球最大的初中和高中機器人計畫,每年會以一場遊戲的形式呈現一個激動人心的工程挑戰。在老師和導師的指導下,學生們全年參與構建創新機器人並進行競爭。VEX機器人競賽可以在多個方面實踐STEM教育。首先, VEX這一類的機器人競賽透過提供親身參與的機會,激發年輕學生參與設計、建造和程式設計機器人的經驗。這種參與方式能從小引起對STEM領域的興趣,鼓勵他們進一步深入研究。參與競賽的學員將應用科學和工程原理,獲得實際的經驗。這種實踐式的學習方法,有助於彌合理論知識和實際應用之間的差距。這些競賽也同時強調團隊合作,分享看法,並善用多樣的技能解決複雜問題。這些合作經驗增進跨學科團隊共同參與創新項目。參與機器人競賽的學生可輪流在團隊中擔任領導角色,有助於培養領導能力、專案管理技巧和責任感。參與機器人競爭需要參與者以有創造性的方式應對挑戰並解決問題,從中培養批判性思維、適應性和韌性。參與學生會與來自產業的專業人士、導師和評審互動。這種接觸使他們瞭解當前產業實踐、標準和技術進步,為學生應對專業STEM領域的期望做好準備。在這次比賽戰況激烈。冠亞軍一直平手。在閉幕典禮時,朱家明校長邀請我頒獎。頒獎時,我講5分鐘鼓勵學生的話。我放了3部影片,是我的研究團隊及夥伴進行整合AI及機器手臂的成果,希望藉此擴大學生們的視野。最後我給學生一句話: 「享受進行專案的樂趣,快樂的玩耍吧。」學生不只要「作中學」,更要「學中樂」。(現為國立陽明交通大學資工系終身講座教授暨華邦電子講座)
半導體材料開發新典範(一)
現代的半導體產業中,有3個經濟價值成長方式:製程繼續微縮、先進封裝與新材料開發的應用。製程微縮的研發的參與者數目寥若晨星,先進封裝的參與者稍多,而新材料的開發參與者貫穿整從上游至下游的個半導體價值鍊,成為整個產業的新焦點。 傳統的新材料開發方式,以合成(synthesis)為主,這是老牌材料強國日、德所擅長的。合成法以各式成分原子來組織穩定的化學結構,然後測試其化合物的各種性質—譬如導電性,以及在外來刺激下材料的反應—譬如順磁性(paramagnetism),或抗磁性(diamagnetism)。 合成過程當然非常依賴於知識和經驗,用以縮小搜尋適合特定應用目的的化合物範圍。但是能否發現適合應用目的的化合物也存有很高的機率性,因為搜索的範圍有限,對候選化合物的性質也僅憑臆測,基本上這就是一個試誤的過程。另外,合成的製程比較像手工藝,過程中的眾多的製程參數及方法過去很多是靠經驗或多批次試驗的結果,有點像匠人工藝,是以過去的材料先進國家能夠維持其材料開發及製造的優勢。 進入21世紀之後,由於計算力的快速提升,傳統的化合物—特別是晶體(crystal)化合物—的開發、性質預測、穩定結構的發現以及製作工藝的優化方法,都產生極大變化,連帶地將改變材料產業的競態勢。 2個領域的進展引發這個典範的轉換:第一原理計算(first principles calculation)和機器學習,不久以後也許還有量子計算,這些都是高度依賴算力的操作。其直接影響將是晶體化合物的各類性質可以精準預測、晶體化合物的製程可以最大程度的優化,以及可能的穩定晶體結構可以徹底搜尋用以建材料資料庫等。這些隨之產生的新能力對於需要新材料來滿足應用需求的使用者當然是夢寐以求的。 第一原理計算,或稱之為ab initio calculation,是指從最基礎的物理理論出發,計算晶體化合物的各種性質,這裡指涉的基礎物理理論一般是指薛汀格方程式(Schrodinger’s equation),但是在電子高速運動時,可能要訴諸更基本的量子電動力學(Quantum Electrodynamics;QED)—相對論版的薛汀格方程式。 雖然從最基礎的物理理論出發,但是現實的世界極為複雜,即使是一個單一原子系統,除了最簡單的氫原子之外,不存在解析解(analytic solution),遑論一般的化合物會牽涉到2個以上的原子核以及數十至於數百個以上的電子,所以某種形式的簡化處理是必要的,而數值計算(numerical calculation)也是不可或缺的。過去這些所遭遇困難的量子力學問題,也是當初驅策Richard Feynman倡議量子電腦的原因之一。 雖然第一原理計算其實早就開始於上世紀70年代,但是一直要到90年代後其準確度才逐漸被學術界-包括物理、化學、材料等領域-所接受。受限於當時的電腦計算能力,還無法直接投入產業真實的應用。 第一原理計算可以用來預測一種特定晶體化合物的各種物理、化學性質,從帶隙(bandgap)、導電性、極化(polarization)、磁性(magnetism)、光學性質等,幾乎無所不包,其中很多性質是半導體產業關注的核心。連現在半導體在奈米尺度製程中最關心的介面性質、缺陷、摻雜等精細結構的敘述,第一原理計算現在都可以給出相當準確的預測。 大概不到10年前,我跟某一晶圓製造公司建議設立一個第一原理計算團隊,理由是可以節省大量工程試驗批(engineering pilot lots)的經費和時間。當時他們的回應只是笑笑,半導體廠要做數值計算物理的人做什麼?現在他們已經有一支不小的第一原理計算團隊了。 Scaling deep learning for materials discovery .
2024年產業展望:AI應用浮現,半導體成長動能方向明確
半導體產業對台灣的重要性不言可喻,其中,台積電在10奈米(不含)以下先進製程具有極高的全球佔有率,因此不論是蘋果的手機應用處理器(Application Processor)、人工智慧(AI)伺服器用的GPU或是雲端資料中心所需的客製化晶片(Custom ASIC),最後大多數都依賴台積電生產。回顧2023年,整體半導體市場呈現9%的年減幅度,就半導體元件類別分析,主要是受到記憶體產品市場年減幅度達到35%所致,少數持續成長的領域出現在AI相關聯的伺服器用GPU及雲端網路資料處理晶片、電動車相關的功率半導體,例如碳化矽(SiC)元件、矽基IGBT等。全球前20大半導體業者中,估計僅有5家在2023年營收可達正成長,包括NVIDIA、博通(Broadcom)、英飛凌(Infineon)、意法半導體(ST)、恩智浦(NXP),後面3家業者主要因為車用半導體佔營收比重高,而車用半導體是五大終端應用裡年成長率最高者;NVIDIA主要成長來自於AI伺服器用GPU及其資料中心用資料處理器(DPU);博通在網通基礎設備用晶片及客製化AI晶片擁有高市佔率,需求持穩且議價力高。展望2024年,全球半導體市場預期可成長雙位數達12%,以下3點值得關注。首先,終端市場持續消耗庫存,2024年下半半導體業者庫存水準及出貨將陸續回復正常。2023年下游終端業者下單縮水以消耗庫存,導致近3季半導體業者產能利用率偏低,截至2023年第3季末的半導體業者庫存水位仍然高於歷史平均水準。預期半導體廠商的產能利用率(特別是8吋及以下晶圓廠)距離恢復正常,恐怕還需要至少2~3季的時間,這一部分可以就各主要國家製造業採購經理人指數及晶圓廠產能利用率、上下游庫存水準續作觀察。過去以來,半導體市場一直都有景氣循環的特性,主要原因是半導體廠全新投資到量產往往需要2~4年時間,投資決策時的需求判斷與日後實際需求狀況可能有落差,新興應用崛起、晶片供應鏈失衡、經濟波動、地緣政治等因素都會造成供需態勢的變化,過去20年全球半導體市場成長14年,衰退6年。觀察中長期去是,仍是處於穩定成長的上升軌道上。 其二,分析半導體終端需求面,2024年四大主要應用晶片市場都將出現正成長。預估四大應用市場分別是智慧型手機、伺服器、汽車以及PC。上述四大類終端產品的年出貨量可望較2023年增加(2024年汽車出貨量年增幅度有限,但電動車比例可望繼續提升,有利車用半導體市場繼續成長),其平均半導體含量也會較2023年高,有助2024年半導體市場成長。WSTS最新預估2024年全球半導體市場可望年增680億美元,DIGITIMES研究中心預估上述四大應用半導體需求年增可達480億美元,佔2024年淨成長金額約7成。其三,就熱門半導體而言,無疑地AI、高效能運算有關的半導體最值得關注,NVIDIA的伺服器用GPU仍然炙手可熱,該公司截至2023年10月29日的最新季度毛利率為74%,營業利益104億美元,營業利益率達57.5%,若單看伺服器用GPU及配套軟體服務,估計毛利率可達80~85%。NVIDIA之外,客製化AI運算晶片及協助AI運算相關的網通晶片也是高成長的產品,受益者包括博通、Marvell及負責生產的台積電,更多的雲端及網路服務業者為降低運算成本及耗電,紛紛往客製化晶片方向發展。另外,AI PC、AI手機的崛起也將帶來新的晶片契機,不過2024年還處於模索、定義需求的階段,預期終端產品大量出貨時間點可能落在2025年。記憶體市場在2022及2023年連續2年明顯衰退,主要原因是記憶體市場單價波動大,再加上2022~2023年智慧型手機及PC兩大應用出貨衰退所拖累,預估2024~2025年可望恢復成長,2024年因為主要DRAM記憶體業者擴產重心放在高階AI伺服器必須的高頻寬記憶體(HBM),在非HBM的DRAM產能擴增有限,一方面HBM的單位售價遠高於一般DRAM,另一方面,減緩一般DRAM產能擴增也有助於DRAM市場供需持穩,預估2024年記憶體市場可望年增40%以上,其中DRAM市場比起NAND Flash市場成長性高,主因供需態勢較有利及HBM因素。
智慧應用 影音