智能应用 影音
DForum1018
ST Microsite
纳米压印的初始应用 (二):近期市场
Canon的FPA-1200NZ2C纳米压印机这个型号,其实最晚在2015就已出现在相关的学术期刊上了。已经出现8年的旧机型能够重新上新闻并且吸引注意,最主要的原因在于它将要进入比较大范围的半导体量产应用。  延伸报导名人讲堂:纳米压印的初始应用 (一):技术与挑战纳米压印有2个特性可以有效地拓展它的应用范围。第一,是它不仅适用于2D图形的打印,而且有些3D图形也可以用单一模板来转移线路图形,有效的简化制程。另外一个特性,是纳米压印可以用于任何基板,不只是适用于硅片上。  这2个特性让纳米压印已经开始被应用于一些次领域,譬如生物传感器等。只是这些领域的产值相对较小,未能获得充分关注。  这次新闻受到较多关注的原因,是纳米压印要进入主流半导体制程行列,而且时程明确。  铠侠(Kioxia;原东芝存储器)与SK海力士(SK Hynix)将于2025年开始,以纳米压印技术生产3D NAND Flash。NAND在很长一段时间内是市占率仅次于DRAM的半导体产品类别,纳米压印进入大宗产品的制程行列,意义非凡。  东芝(Toshiba)于2004年就开始以纳米压印试产NAND,目前与Canon和大日本(Dai Nippon)等公司为共同推动建立纳米压印技术生态的主力成员。SK海力士与铠侠素有各式的市场、技术合作,同时宣布采用纳米压印技术也在情理之中。  NAND可以率先采用纳米压印有其技术上的理由:NAND是存储器阵列。一般存储器阵列线路图形高度重复,基础单元结构相对简单。最重要的是其容量设计可以留有冗余(redundancy),如果制造过程中有局部线路图形产生缺陷,可以用硬件方法融断(fuse)受损部分,以原先预留的冗余部分替代,晶圆整体良率可以维持在较高水准。  如果纳米压印要应用到DRAM,缺陷密度的要求也一样可以较为宽容。但是DRAM底部有很稠密的晶体管触点(contact),因此上下层间的对准就变得格外重要,以前纳米微影机的技术规格尚达不到量产的要求,需要再改善覆盖后才谈得到DRAM的应用。至于逻辑芯片,由于线路中大多不是重复的图形,比较少有冗余设计的可能,对于粒子或缺陷极为敏感。目前的纳米微影机仍需降低粒子和缺陷才有办法跨入逻辑芯片的制造应用。  另一个比较有期待的领域是矽光子。纳米压印在转印线路图形时的线边缘粗糙度(line-edge roughness)的表现优于曝光机的表现,因为没有光的干涉、光阻蚀刻等问题,这使得光子在通过这些以纳米压印制造的光元件时,表现更符合原设计的预期效能,而且一般光学元件制造层数较少,层间覆盖的问题没有那麽尖锐。另外,光学元件很多是3D图形的,这正是纳米压印的强项之一。  矽光子还有另外一个机缘。原先在异质整合路线图(Heterogeneous Integration Roadmap;HIR)中计划于2020年矽光子就会出现在异质整合芯片市场中,但是实际上被延迟了。由于人工智能(AI)应用的兴起,大量数据移动的需求要以光的形式来实现,台积电就宣布在2025年开始矽光子的量产。  半导体产业的逻辑,总是会将机器设备的价值利用到最后一刻,善用原始的巨大投资,所以对新设备的引进就有潜在的利用障碍。但是对于新建的产线或厂,只要事前有足够的生产验证,大规模的采用新设备比较有机会。纳米压印恰好于此时较明显的出现在产业的视野之内,不能不说是风生水起的机缘了! 
AI时代企业的关键机会和思维
随着人工智能(AI)技术发展,人工智能已深入人类生活。为了让产业、政府和学术界能够理解AI、GPT等科技的重要性及未来趋势,中华政大企业管理协会特别举办年度企业论坛,邀请国内专家探讨AI时代的产业策略,期许台湾把握人工智能的机会,引领世界经济向前。我被邀请给一个主题演讲(Keynote Speech),在论坛分享「AI时代企业的关键机会和思维」, 以智能城市的发展前景引导出台湾在AI时代的优势和发展策略,并探讨企业在这个时代所需具备的关键能力和思维,以及AI对人类所带来的挑战和影响。为了因应AI所带来的挑战,我呼吁大家学习电脑语言(如Python),因为在未来,电脑语言将成为不可或缺的技能,并能够增强个人的竞争力。今日电脑语言已愈来愈人性化,形同学习英文或日文,大家不应害怕排斥。同时,我也提到在AI时代,数据的重要性变得非常突出,但我们必须注意数据的正确性和可靠性,因为数据的错误可能导致AI错误预测的结果。因此,我们应该重视有效管理和处理大量乾净的数据,同时也要关注隐私和法规问题,确保数据的合法使用,避免引发法律争议。我以白草莓病害侦测为例,经由生成对抗网络(GANs)生成图片训练演算法,我能将病变侦测的准确率由87.50%提升到 96.88%。另一个例子,梅约诊所(Mayo Clinic)和NVIDIA、MGH&BWH临床数据科学中心合作,使用GANs创建「假」脑部核磁共振扫描。他们发现,通过训练算法于这些「假」医学图像和10%真实图像,可以成功识别肿瘤,避免昂贵且艰钜的真实图像收集。关于企业在AI时代应该如何把握关键机会,我以公司部门改造为例,提出了以下步骤。首先,工作人员应该将年度目标与关键成果OKR(Objectives and Key Results)置于一旁,优先找出日常工作中的瓶颈。接着,寻找适合的AI工具,或者藉由询问ChatGPT等技术来撰写能够串连API的程序,进行自动化。完成后,进行测试,一旦成功,便可将自动化流程固定下来。我最后强调,AI在现代社会中已变得不可或缺,我们不应忽视数据集中和计算力的重要性,也应更深入地思考和探讨如何应对AI的发展和应用,因应未来AI所带来的变革和挑战。同时,我们也应更积极地应用AI来解决社会问题,改善人们的生活,期待AI能在未来带来更多的惊喜,为社会创造更多的福祉和进步。
纳米压印的初始应用 (一):技术与挑战
最近Canon发布可以达5纳米制程节点的纳米压印机FPA-1200NZ2C 。纳米压印是半导体制造中将线路设计图案转印到晶圆的方法之一,另一个为人熟知、也是目前产业界中用以量产的主流方法是曝光机。  纳米压印的方法其实很简单,就像用木模板转印图案到红龟粿上一样。红龟粿模板是阴刻,1:1的将龟的图案压在煮熟的糯米粉团上,压印后的图案是阳刻的。这其中没有像曝光程序中牵涉到光源、光学系统、感光、显影、蚀刻等复杂的过程以及精密昂贵的设备,所以晶圆处理程序价格相对较低似乎是理所当然。  关键的技术是压印模板的制造,以及前文中以糯米粉团所比拟的高分子树脂(polymer resist)及整个压印过程。压印模板与欲转印的图型是1:1,所以在制造模板时要有至少与在晶圆上欲转印的图案一样精细的分辨率,这用来塑造模板图样的工具自然是电子束(electron beam)。电子束是半导体业用来在光罩上形塑线路图样的主要工具。  电子的德布罗意(de Broglie)波长是0.08纳米,也就是说电子束理论上的分辨率就是在这数量级。对于任何目的的刻画,这都远超过所需要的精度—这比原子都小!  问题是被电子束用来呈像的物质会与电子发生作用,因此电子束刻画的分辨率极大程度的依赖于使用的物质。目前电子束的分辨率大约在5~10纳米左右,这对于5纳米制程实际的临界尺寸(critical dimension)14纳米便够了。纳米压印还预告未来可以推进到2纳米制程节点,它实际的临界尺寸是10纳米,也还在目前电子束分辨率可触及的范围之内。  以电子束刻画的模版是母板(master plate),接下来就是大量复制。说「大量」一点也不夸张,因为目前纳米压印机每小时产量(throughput)就只有100片上下—这大概只比EUV刚推出时的产量稍高,而模板可以使用的次数在几千次的数量级,大概是几天就得更换。  在纳米压印之前,基板需先滴有高分子树脂(polymer resist),与基板上粘合层(adhesion layer)充分ˇ浸润(wetting)。之后就是将模板压在布满高分子树脂的晶圆,藉压力及毛细现象让树脂延伸入模板图形之中。然后用紫外光固化(UV curing)树脂,取下模板。  纳米压印过去技术发展的挑战和上述的压印程序和使用的物质有直接的关系。过去的几大挑战分别为覆盖(overlay)、产量、缺陷率(defectivity)和粒子。  覆盖是指元件上下不同层间结构的对齐问题,在纳米压印制程中会产生覆盖问题的原因之一是压印过程中树脂被压印而扭曲或变形,以致于上下层之间的相应结构无法对齐。此为纳米压印过去在技术上常被诟病的地方。 延伸报导Canon新NIL系统成本优势 有利芯片制造大众化发展又譬如纳米压印的产量其实取决于树脂滴(resist drop)的大小、扩散速度以及跟基板粘合层的浸润速度,此基本上是材料特性的问题。  这些问题在过去发展的30余年间主要由物质的改善以及一些辅助的机制,譬如上下层对准校正等,这些问题获得相当程度的改善,纳米压印因而逐渐步入量产制程的行列。 (作者为DIGITIMES顾问)
半导体产业奖励促进条例:适用阶段与效果(三)
研究补助金与合作研发中心都是针对半导体技术研究与发展的现金补助,与以税赋减免的方式来奖励企业的技术研发不同。政府可以扮演更积极的角色,执行方式也各有变形。 研究补助金最着名的成功案例之一是曝光机光源的研究。此计划经费的来源是国防高等研究计划署(Defense Advanced Research Projects Agency;DARPA),90年代半导体产业在寻求下时代曝光机光源的过程中最终选择EUV,研发后技术移转,最后在ASML手中经历20年发展终于完成量产,在目前及未来的继续微缩之路独挑大梁。 但是这种大型的基础科技研发计划对于处于发展初期的产业和企业并无太大帮助,也没有办法执行。能够按部就班的丰富产业生态、增加企业存活率者,多是短期产品开发或技术的应用发展类型的计划。  合作研发中心的例子如台湾的工研院,或台湾半导体研究中心。  除了提供技术服务、研究合作、仪器分享、产学合作等预期中的功能外,这类机构还可以有其他至少两样重要的功能:蕴育新创,和企业联手攻关。  在资金环境相对友善的情况下,所研发的接近量产阶段技术,及其相关的研发人员,可以分立(spin off)出新创,使得半导体产业的生态环境变得更丰饶。这原是工研院设立当时的初衷之一。在台韩长期竞争的历程中,这些由研发机构分立出来的新创成为台韩产业发展成截然不同风貌的主要原因之一。这也是在新兴国家产业发展之初就可以采取的措施。 另一个措施在产业发展到一定阶段才能发挥作用。当半导体企业能够成功存活下来,下一个重要的关卡在于如何从营业盈余中产生足够的经费支持独立的研发。政府的所有研发经费补助其实都是在协助企业解决研发规模经济不足的问题。  从接受政府补助到能够支持自主独立研发的过渡期间,企业联合研发可能是较好的方案之一,譬如当初的IST(IBM-Siemens-Toshiba)联盟共同研发DRAM技术。合作研发中心正好可以当成此种研发联盟的平台。 人力资源短缺的问题发生于有半导体产业的几乎每个国家的每个阶段,原因各有不同。处于产业发展初期的国家大概都是因为缺少产业历史因而没有足够有经验的从业人员;而处于产业发展后期的国家有可能是人口基础已经开始下降,如东亚诸国,或者是产业在其国内薪资的相对竞争力不足。人力资源问题政府必须介入,因为牵涉到公权力相关事宜,如移民政策、教育、劳工等,是以劳动力发展和培训必须要成为半导体发展政策的一部分。 值得注意的是对于高级人力资源的养成方法。现在的教育体制有半导体专业化的趋势,譬如半导体学院或微电子研究所。回顾以前半导体的发展历程之中,虽然工程人员以电机背景居多,但是其他理工背景如材料、化工、机械、资工、物理、化学等的也不在少数。现在的半导体的加值轴线,也已经从单一的制程微缩走向多面向,譬如新材料开发的碳化矽、氮化镓,以及先进封装等。这些新方向的开发需要有各类基础科学的支持。接受传统半导体技术教育的无疑比较专精,因而能立即投入生产。但是对于未来半导体的发展、创新是否有利则是大有疑问。政府于劳动力发展和培训的制订必须依发展阶段慎重考虑。  最后要提醒,各类的奖励补贴政策订定时也要考虑国际市场的规矩。WTO订有「补贴与反补贴措施协定」(Agreement on Subsidies and Countervailing Measures;ASCM),禁止特定的补贴行为。譬如第三条(Article 3)中禁止出口补助或优先采购本国产产品,虽然此协议对发展国内家有特别的弹性与考虑。另外,各国亦有反倾销法律用以对付受政府过度补助的不公平贸易兢争。  虽然WTO现今对于全球贸易秩序的规范能力已不如当初设立之时,主权国家的行为也不受法律的管辖,但是上述规范的惩处最终会落在接受补贴的个别企业或产业上,订定产业奖励促进条例时要先将这些后果考虑清楚。
掌中戏的想像
将数码科技结合人文,呈现人生百态,是物联网最迷人之处。罗斯福夫人(Eleanor Roosevelt;1884~1962)说: 「我们是命运的傀儡,无法指挥命运,而是被它塑造。」,但是我们仍努力地想掌握人生,叙述生命的故事。在机缘巧合下,我担任布袋戏西田社的董事,就在掌中戏中发挥想像,布袋戏偶的命运掌握在我的手中。利用物联网技术,我与罗禾淋教授带领学生们创作PuppetTalk,能以智能手套控制机器人偶。于是我们跨越时空将传统布袋戏偶结合现代舞蹈,叙述我们的故事。PuppetTalk计划充分运用机器手臂操控实体掌中戏偶,透过动作捕捉手套纪录舞者在肢体延展时的手部动作,以手势牵动延伸到身体,因此把动作数据化,数据转译控制机械手臂之运动,如此如同再次思考戏偶的「动」到操偶的「姿」,再从操偶的「姿」到身体的「形」。形与意之间,印证偶戏历史在文化脉络中的传承,生生不息。计划第二阶段将加入多轴机械手臂,使操偶动作更趋近原样,使传承可以永恒。2022年,PuppetTalk受邀到德国TANZAHOi国际舞蹈节表演。我们打破德国人的想像,跨越东、西方地界,经由广达电脑提供的5G传输,由德国的智能手套控制台湾的机械手臂及掌中戏偶。我们是如此的贪心,跨越国境,线上操控。南纬集团旗下爱克(AiQ)的智能手套更结合罗禾淋教授的机器人偶及虚拟人物Avatar,荣获2023年日本设计大奖Good Design Award。PuppetTalk利用物联网(IoT)的智能手套传感,可以捕捉并纪录布袋戏大师的手势桥段,以云端大数据收集切割手势桥段,并以人工智能(AI)重组手势桥段,最后再以多媒体进行虚实人偶的互动整合。其技术成果发表于国际学术期刊。在论文中,我写下一首英文诗,并将之翻译成中文:「掌中乾坤有谁知,演戏疯来看戏痴;人生好比布袋戏,曲终人散乐自知。」在此时刻,心中喜乐,觉得可以掌握自己的命运。其实一直想塑造我们的,不是命运,而是旁人。罗斯福夫人忠告我们: 「永远不要让一个没有权力说“是”的人告诉你“不”。」这句话的意思是永远不要让别人说你不能做好某事,而这件事他们自己却从来没有做过。人们不乐见别人成功,看见他们比自己更好,常会阻止别人,并说是做不到的事。我们对自己要有信心,不为浮议所动。经由布袋戏西田社,我亦有缘认识陈耀昌先生(《傀儡花》作者)。他曾笑着说,PuppetTalk和《傀儡花》都有以傀儡影射的深意。《傀儡花》不只反映历史,也反映时代传承,甚至反映族群命运及性格。藉由PuppetTalk的资通讯科技,我们企图掌握自己的命运,寻求永恒的传承。掌中戏是一个文创科技很好的例子,我们由布袋戏西田社的文创需求,连结到广达的5G技术以及南纬爱克的智能纺织技术,有无限想像的空间。
半导体产业奖励促进条例:适用阶段与效果 (二)
税赋减免、加速折旧、研发补助金、财政补贴等,都是以财税的形式补贴半导体产业的投资、设备购买、研究发展所需。 税赋减免一般是从企业营业所得税中减免一定百分比的已投资、设备购买或研发经费,这是一般政府比较喜爱采用的奖励形式。原因是政府给的补助经费其实是企业发展成功后自行创造出来的,是个无中生有的办法。但是这个办法比较适用的产业发展阶段,是产业稍为有立足之地、能加入国际竞争行列的阶段之后。对于甫开展半导体产业国家中的初始企业,既无法减轻投资的负担,也无法增加短期内其生存的机率。毕竟营所税的减免只适用于企业已有盈余产生的状况,而一般半导体制造厂规划的盈余年度至少在公司开始设立厂房的第五年后,能准时达标的已算是其中佼佼者。 因为对起始的企业帮助不大,企业可能以变通的方法来利用。举个有趣的实例。有一个国家对于半导体设备投资有营所税减免的奖励,但是如前所述,这是一笔看的到、吃不到的奖励。于是,半导体企业与金融机构联手「协作」,由金融机构购买半导体设备后租赁给半导体企业使用。由于金融机构是赚钱的企业,一刚开始就可以使用投资半导体设备的营所税减免。从政府所取得的部分税赋减免金额则以降低设备租赁金额的方式,回馈给半导体企业。政府补助半导体产业的意图由于奖励方法的不恰当而被迫部分流向他处;而半导体企业生产设备以租赁的方式租用通常是最不得已的最后手段,好似典当变现。这个国家最终落得12寸厂完全消声匿迹。订定税赋减免条例必须能够精准规范其最终受惠对象。加速折旧容许企业在较短的时间内将设备折旧完毕。譬如台湾的半导体制造设备会计上折旧年限一般是5年,加速折旧就譬如说在3年内折旧完毕,只留残值。这样一来,由于在前三年内折旧金额较高、帐面上的生产成本较高,盈利因而较少,需要缴交的营所税较少。其所提供的实质好处就是让企业能从「未来」调动现金流到现在,能够提前投入资金于扩充产能或研发。这个办法比较适用于长期有盈余、量产主要依赖于少数领先制程的公司,譬如过去DRAM扮演先进制程推手(technology driver)次产业时的三星电子(Samsung Electronics)。对于存活是首要任务的新进公司,这可不是实惠,也用不着、不敢用。加速折旧必然的会扩大初期的营运亏损,其所显示的营运结果会令潜在投资者为之却步。 财政补贴是真金白银,要编列在政府预算之中。对政府是结结实实的现金投入;接受者也是实在的优惠。半导体产业发展初期产业环境欠佳、进入障碍高,现金补助可以有效降低投资风险,降低进入障碍,这是对产业发展初期最有效的补助手段。然而,由于这是政府真实的投入,所以一般财政补贴会綑绑许多附加条件。除了对于投资者的资格审查外,一般也附有一些条件,譬如对就业机会的保障—特别是欧洲国家。 用现金的补助虽然要比较严格的规范补助标的,但是以达到特定技术门槛才给予补助可能不是一个好手段。半导体发展是一个漫长的过程,在产业发展初期能够让企业存活、进入经营良性循环、丰富产业生态才是比较务实的发展策略。
第一部实用的电子计算机
我担任国立阳明交通大学信息学院院长时,学院有不少老旧的大型电脑设备。根据学校流程,这些旧设备应该报废,以免占据空间。我当时觉得这些电脑代表计算机科学的演进,应该予以保存,而有了成立电脑历史博物馆的念头。经过十几年后,这个构想才由彭文志系主任实现,在信息学院的地下室成立博物馆。当初我担任院长时,国外友人愿意捐出一部ENIAC(Electronic Numerical Integrator And Computer;ENIA)部分零件,然而物换星移,最后没成功,相当可惜。ENIAC是首部实用的电子计算机。第二次世界大战时,美国陆军军械部(ARMy Ordnance Department)为了量测枪炮的弹道,出资给宾州大学的摩尔学院(Moore School of Electrical Engineering),研制能进行大量计算的机器,以填写弹道表格。当时军方的联络人是Herman Goldstine少尉,而宾州大学计划主持人是John Brainerd教授,团队成员包括2位学生John Mauchly, 以及Presper Eckert。关于Brainerd对ENIAC的贡献,鲜少人提及。IEEE有文章溢美Brainerd,说:「Under Dr. Brainerd's inspiration, leadership, and supervision the ENIAC was conceived and built.」。但是,其他文件却显示Brainerd曾阻挠ENIAC的发展。Mauchly首先于1942年提出程序(Program)这个名词,并写了一份7页的提案 《The Use of High-Speed Vacuum Tube Devices for Calculation》,建议发展电子设备(Electronic Device)取代机械式计算设备 (Mechanical Calculation Device),认为可借此大幅加速计算。然而Brainerd怀疑其可行性,将之存档,束之高阁。幸好Goldstine看到这份报告,直接要求Mauchly正式提案,由军方提供经费。1943年,发展ENIAC的计划由Mauchly主导观念性的设计,Eckert负责硬件工程。这个计划被列为最高机密,代号为「PX」。ENIAC由18,000 个真空管及1,500个继电器组成,重量约30公吨,占地1,500平方尺,消耗140千瓦电力,需要2部12匹马力的吹风机散热。ENIAC程序设定为外接式,全由手工在接线板上设定完成之。ENIAC的高速计算能力远胜于过去机械方式,可以在一秒钟内做5,000个加法或357个十位数的乘法运算。除了用来计算弹道外,ENIAC也用于发展原子弹的计算。传说这部机器一运转,费城(Philadelphia)西区的灯光会变暗。维持此机器正常连转着实不易,大约每2天就有1个真空管故障。ENIAC服役10年后,于1955年10日月2日正式退役。1945年,ENIAC升级改善,增加程序储存的功能(Stored-Program),命名为EDVAC。Eckert发明一种特殊存储器「水银音波延迟线」(Mercury Delay Line Memory),同时储存数据(Data)及程序(Program)。这是一个创新做法。此时数学奇才John von Neumann正于宾州大学担任顾问,参与EDVAC计划的相关讨论。von Neumann写了一份EDVAC的内部报告《First Draft of a Report on the EDVAC》。因为von Neumann是超级大牌人物,Goldstein将这份报告送到和von Neumann往来的军事单位,以宣传EDVAC计划的卓越。问题是,Goldstein刻意将报告中提到Mauchly和Eckert的部分删除(大概嫌他们不够大牌)。读到这份von Neumann报告的人,对于报告中EDVAC这种创新的计算机架构都大感惊艳,称之为「von Neumann Architecture」。现代计算机的设计几乎都遵循von Neumann Architecture。例如剑桥大学的Maurice Vincent Wilkes,根据这份报告造出第一部储存程序的计算机EDSAC(Electronic Delay Storage Automatic Calculator)。Mauchly和Eckert吃了闷亏,未能得到应有的功劳。von Neumann非掠夺之人,从未宣称他是这个架构的发明人。Mauchly一直活跃于电脑界,是ACM(Association for Computing Machinery)共同发起人,后来并成为ACM的总裁。我因为信息技术(Information Technology)贡献,有幸于2003年被选为ACM会士(Fellow),为全球第十七位华人获此殊荣者,深感荣幸。
半导体产业奖励促进条例:适用阶段与效果 (一)
全球供应链重组的过程中,提供许多供应链国家的内部半导体的市场。做为系统制造最关键的零组件半导体元件,系统制造厂所在地的国家无不寻求半导体元件制造的进口替代机会。  在半导体产业根基薄弱的状况下,政府以产业发展奖励促进条例,提高初始投资成功的机率也是势所必然。更何况,从产业发达国家自美、日、韩、德等乃至于产业发展国内家,无不使用各式奖励办法。如果产业发展国内家没有奖励促进条例来弥补产业生态环境的先天不足,于半导体产业的发展恐怕距离会愈来愈远。  一般半导体产业奖励促进条例,包括:税赋减免(tax deduction)、加速折旧(accelerated depreciation)、研发补助金(research and development grants)、财政补贴(financial subsidies)、出口促进计划(export promotion program)、劳动力发展和培训(work force development and training)、知识产权保护(intellectual property protection)、监管支持(regulatory support)、合作研究中心(collaborative research centers)、贸易协议(trade agreements)、投资促进机构(investment promotion agencies)、环保激励措施(environmental incentives)、群聚发展(cluster development)、政府优先采购(government purchase preferences)等诸多措施。除了贸易协议与出口促进计划与因半导体在各国关税均濒于零而较少见诸实施外,其他的措施在台湾半导体产业发展过程中的各阶段几乎都发挥过其作用。 对处于半导体产业发展初期的国家,监管支持和群聚发展最好由政府直接介入、投资。监管支持是指单一的行政窗口以流水线的方式涵盖所有的行政处理作业。这个措施牵涉到法规的修订和机构的设立,都需要公权力的直接介入;群聚效应则需要足以供产业群聚的大片土地以及相关的基础建设—没有公权力的支持,即使有资金投入也是寸步难行。 台湾过去发展的历史是以科学园区与科学园区管理局(以下简称科管局)一并解决产业群聚以及监管支持的问题,其中自然有法源依据。但是徒法不足以自行,能让其动起来的自然是政府先期的投资。有些国家想单靠奖励条例来促成群聚效应,这恐怕是条艰难的旅程。 科管局是园区所有涉政府业务接洽的单一窗口,而且直属中央政府。在行政效率、政策的统以及行政清廉的监管上有较佳的表现。如果没有这单一的窗口,投资的不确定性便会大幅增加。 讲一个实例。原先科管局的确统一管理所有园区中,业者须与政府接洽办理的所有相关业务,但是后来环保法规立法之后,没有将园区的环保业务也拨归科管局一并管理。有一年新竹市政府向园区厂商募款以改造城区,不久之后突然向园区厂商发动环保检查,裁罚30几家厂商,而这些处罚有很多是有高度争议性的。罚款的金额对于园区的厂商是可以容受的,但是高科技厂商需要持续的资金投入,向资本市场募资是经营常态。募资时的必要档案公开说明书(prospectus)中如果附记环保事件,对于募资活动将造成极大的困难。特别是在欧、美资金市场,环保事件代表极大的经营风险—可能面临政府处罚以及民事甚至是刑事诉讼。后来解决方式自然是立法修改,将环保的监管权也并入科管局,维持单一窗口的监管体制,避免多重监管单位所造成的复杂经营风险。 
量子点以及其应用
2023年诺贝尔化学奖,颁授予Moungi G. Bawendi、Louis E. Brus以及Alexei I. Ekimov,表彰他们在1980年代发现和合成量子点(for the discovery and synthesis of quantum dots)。  大概念来说,量子点是人工制造的「原子」(artificial atom)。  20世纪迄今,人类文明发展大幅度的依赖于电磁学,包括它所涵盖的电荷、磁、自旋、电磁波等诸种现象。对于用于承载、操控这些现象的物质,我们对其了解的基础知识是量子力学以及电磁学。人类对于这些性质的应用,大都是顺从自然的安排。譬如矽的带隙能量(energy gap)为1.12 eV,集成电路的栅极电压就设为比这数值稍高,用以开关晶体管。又譬如DUV雷射光源的氟化氩(ArF;Argon Fluoride)分子的能阶间隙是6.42 eV,所以ArF DUV曝光机对应的波长就是193纳米。换句话说,人类虽然开始掌握关于物质的部分知识,但是对于这些知识的应用,人类过去大致上是听从自然的安排,至少在那些物质的特性参数是如此的。 如果我们想「设计」物质的基础特性呢?譬如它的光、电荷、自旋等性质时呢?我们用以建构的基础单元—也就是类似乐高的积木块—仍旧是自然的原子及其形成的分子,只不过这次要使用基础单元数目要多得多,1个量子点可能要使用100~10,000个原分子来建构,这样制造出来的量子点大小直径在数纳米至100纳米之间。我们的付出的代价是较复杂的制作程序,以及较为庞大的单元尺寸;收益是可控、可设计的量子点的光、电、自旋等特性。这些特性可以藉由量子点的大小、组成材料、形状等来调整其内部能阶,而能阶正是物质的量子特性之一,是以名之。 可以设计出人工原子,自然也可以设计出人工分子、乃至于超晶格(superlattice)等更大尺度的结构。 量子点的制作材料过去以II-IV族、III-V族为主,譬如硫化铅(PbS)、硒化铅(SePb)、硫化镉(CdS)、硒化镉(CdSe)、碲化镉(CdTe)、砷化铟(InAs)、磷化铟(InP)等。  但是II-IV族量子点多含重金属,譬如镉与铅,对环境相当不友善,所以显示器中的量子点目前正转向III-V族的量子点,譬如磷化铟(InP)、硫化铜铟(CuInS)等。而III-V族量子点如当成生物中的体内(in vivo)当传感器或成像使用,可能有毒性或致癌,因此目前正寻找其他材质如矽、碳等,或者加以表面修饰(surface modification)以制作安全的量子点。  量子点的应用非常广泛,包括显示器、单电子晶体管(SET;Single Electron Transistor)、太阳能电池(solar cell)、LED、雷射、单光子光源(single-photon sources)、二次谐波生成(second-harmonics generation)、量子点量子位元(quantum dot qubits)、生医研究里的传感器及成像(imaging)等。  量子点显示器已经商业量产,制造方法与LCD差不多,只不过LCD中用来当背光(backlit)白光LED改为蓝光的量子点。制作流程先是在基板上以有机金属化学气相沈积法(Metal Organic Chemical Vapor Deposition;MOCVD)制作蓝光量子点,于这层之上制造并排的绿光量子点及红光量子点当彩色滤光片,另外留一处空缺透蓝光,形成RGB三原色像素。  量子点显示器有深黑色(deep blacks)、最佳视角(optimal viewing angle)、原始色彩(pristine colors),较省电、高色彩饱和度(saturation)、较宽色域(wider color gamut),寿命亦较长。目前市场上的竞争对手是OLED,但是未来分辨率再走向8k以后,暂时没有能涵盖如此广泛色域的对手。  量子点的2个前瞻性应用,分别是生物医疗研究与量子计算。  量子点于生物中可以用于成像、标记(label)、运送(delivery)、传感等功能。量子点具有明亮且稳定的萤光,而且可以调整其颜色,还可以附加功能基以锁定特殊标靶。由于其尺寸仅数纳米,不仅微米级的动物细胞可以轻易解析,连尺度与其相当的蛋白质也可以用量子点来标记研究。  一个有趣的应用领域是用来研究脑细胞及功能,这个研究领域又终将回馈到人工智能(AI)、类神经芯片(neuromorphic chips)、脑机界面等竞争激烈的尖端科技新领域。  只是如前所述,量子点于体内毒性的问题需要先澄清并克服。  量子点量子位元是被寄予厚望的量子计算技术,因为它不只是半导体兼容的技术—它本身就是半导体技术。如果原型开发成功,它可以立即利用目前成熟的半导体生产体系快速投入量产。  目前的量子点量子位元是自旋量子元(spin qubit),即量子点中约束1个电子,而且这个电子的自旋的状态可以被操控、测量,当成量子位元使用。  量子点量子位元的技术发展面临的主要挑战,是量子点量子位元之间不易形成量子纠缠,目前可以相互纠缠的量子点量子位元数一只手数得完。不容易被环境干扰的量子位元,也意味着不容易与周遭的量子位元形成量子纠缠。这是典型的工程问题—权衡两难以最佳化。 量子点此次获得诺贝尔化学奖实至而名归。它发现人工原子,使得人类拥有更进一步操控微观世界的能力,它对文明及经济的贡献已经开展在照明及显示器上,而它又可以成为促成其他领域新发现的工具,这些都是典型得奖作品的印记。  
管理科学的实务
多年来,我参与中华民国管理科学学会「吕凤章先生纪念奖章评审会议」,评选出的获奖者都是年轻有为的管理科学研究者。比较遗憾的是,申请者大部分以学术研究及论文成果为被审查标的,很少提出如何将其研究成果转换成管理科学的成功实务案例。管理科学单纯比拼论文发表有意义吗?以上的问句并无贬抑管理学理论的意思。如同戴明(William Deming;1900~1993)所言:「光靠经验教导管理层任何事情,如果缺乏理论,对于如何提升品质和竞争地位是没有帮助的。」然而理论重要,缺乏实际经验也不行。戴明的管理理论是经由实战而来。1927年,戴明认识贝尔电话实验室的Walter Shewhart。Shewhart是统计过程控制概念的创始人,也是相关技术工具控制图的发明者,这使得戴明开始将统计方法应用于工业生产和管理。我在美国的电话公司工作时,实际的操作都使用到Shewhart有关变异的共通原因和特殊原因的概念。这些实际的操作步骤直接促成戴明的管理理论。戴明认为,这些电话公司的操作步骤不仅适用于制造过程,还适用于企业的领导和管理过程。据此,戴明发展在1940年美国人口普查中首次使用的抽样技术,并制定迭代比例拟合的演算法—Deming-Stephan algorithm。在第二次世界大战期间,戴明参与编制美国战争标准,并教授统计过程控制技术给参与战争生产的工人。1947年,美军占领日本,麦克阿瑟(Douglas MacArthur)将军请戴明协助日本推动人口普查。戴明在日本期间,日本科学家和工程师联盟(JUSE)邀请他来教授统计控制技术。这个组织曾经研究过Shewhart的技术,认为是日本重建的一个关键。戴明培训数百名工程师、经理和学者,教授统计过程控制和品质概念。戴明向日本的公司老板们传达的信息是,提高品质将减少开支,同时增加生产力和市占。许多日本制造商广泛应用他的技术,经历前所未闻的品质和生产力水平。提高品质和降低成本,共同创造对日本产品的新的国际需求。在1982年,戴明的书籍《品质、生产力和竞争地位》(Quality, Productivity, and Competitive Position)由麻省理工学院出版,并于1986年改名为《走出危机》。在这本书中,他提出一个基于他着名的《管理的14项原则》的管理理论。管理层未能为未来做出计划,将导致市场损失,进而导致失业。管理层应该不仅仅按季度股息来评价,还应该通过创新计划来保持业务运作,保护投资、确保未来股息,并通过改进产品和服务提供更多的就业机会。戴明的每一个原则都经过实务的验证,很值得管理科学教授们参考。