智能应用 影音
Microchip
ST Microsite
詹益仁
  • 乾坤科技技术长
曾任中央大学电机系教授及系主任,后担任工研院电子光电所副所长及所长,2013年起投身产业界,曾担任汉民科技策略长、汉磊科技总经理及汉磊投资控股公司CEO。
拿破仑的钮扣与马蹄钉
不久前在电影院观看《拿破仑》(Napoleon)一片,距离上回看拿破仑《滑铁卢战役》(Waterloo)一片,已经是五十多年前的事,那时我还在念小学。《拿破仑》演到1812年,拿破仑率领六十多万以法国为首的大军,攻打俄国。在严寒的冬天一路打到莫斯科,但是因为俄国采取焦土策略,大军得不到适当的补给而落败。最后仅残余数万军队。此次挫败也造成拿破仑第一次遭放逐。事后历史检讨此次作战失利的原因,当然包括严寒、补给,甚至于认为部队已严重感染伤寒。但是好事的化学家,却提出不同的看法,认为拿破仑在俄国战败,原因出在部队的军大衣钮扣。因为大衣钮扣是用锡所制作的,锡在常温下可闪闪发光,但在严寒下却会开始裂解,部队因无法保暖作战而落败。结论是拥有军事天赋的拿破仑,欠缺化学知识。无独有偶地,15世纪的英国国王理查三世,御驾亲征在玫瑰战役中(Wars of Roses),因为坐骑的一个马蹄铁掉落,重摔在地而失掉战役及一个王国。这个掉落的马蹄铁,却是因为少钉了一个马蹄钉。这也是拜登(Joe Biden)总统在刚上任时,一手拿着半导体的晶圆告诉媒体,半导体就是美国的马蹄钉(horseshoe nail),失去一个马蹄钉,就失去一个王国的典故。如同一颗钮扣,决定一场战役。半导体不仅是美国的马蹄钉,对于世界几个主要的大国亦是如此,当大国们体认到马蹄钉的重要时,代表其已经开始失去了。众所周知,半导体是发源于美国。二次大战后,美国为了围堵共产势力,认为扶持起日本,振兴日本经济,对美国是有利的,当然台湾也获得美援及美军协防。Sony创始人盛田昭夫,在1948年就到了贝尔实验室,看到才刚发明的晶体管。日本很快地取得美国授权,开始发展半导体产业,之后的70年代,日本制可随身携带的半导体收音机风行于全球。到了70年代初期,当时美国总统尼克森(Richard Nixon)曾说过,一个有历史的民族,是不会满足于只当晶体管收音机的制造者。果不其然,日本的半导体产品开始席卷美国的市场,尤其是DRAM,美国厂家纷纷退出。我记得在美国留学期间,参加国际电子元件研讨会(IEDM),当时的主流技术几乎都是由日本公司所发表。美国感受到威胁,祭出针对日本的关税、反垄断等商务措施,同时开始扶植韩国。日本半导体产业的衰败,除了日圆升值、泡沫经济、未能掌握到数码时代的来临等因素,但也跟韩国崛起有密切关系。除此之外,美国为了拉拢国内大陆加入西方的民主阵营,以对抗俄罗斯,于90年代中开始,想办法促成国内以开发国内家加入世贸组织,国内因而受惠于自由贸易,经济崛起,也获得不少来自西方的尖端技术。然而,国内还是决定要走不一样的路,与美国抗衡,也导致近来的科技制裁,尤其在半导体领域。台湾的半导体产业则完全不在美国的战略架构下,所独立发展出来的,但是跟美国也脱离不了关系,因为我们的人才养成及技术来源,很多都来自于美国。经过了几十年的努力,台湾是个拥有半导体马蹄钉的国家,现在我们忙着到全球各地帮马匹们钉马蹄钉,因为这些国家认知马蹄钉就是国家安全。但是一旦这群马匹都有了牢固的马蹄铁,我们的国家安全是否因此失去保障?事实上,半导体产业是最不需要去客户端就近设厂,服务国外的客户,因为半导体本身就没有关税,而且又轻薄短小,一个纸箱就可价值数百万美元。在《拿破仑》及更早的《滑铁卢战役》电影中,都描述在滑铁卢战役,起初法军是占上风的。但在中午过后,拿破仑因为身体不适,一度将指挥权交给副手,因而出了乱子,其所倚重的骑兵大量地损失,再加上敌军增援部队的来到而落败。所以一个公司甚至一个国家,指挥权的转移是非常的关键。我们的马蹄钉不多,国家安全要有保障。
2024/1/18
崛起中的国内第三类半导体产业
不久前我请教台湾一位长期投入碳化矽(SiC)元件开发的教授,我问他,你使用过不同厂商的基板,哪一家的表现最好?因为碳化矽基板占其制作好晶圆成本的一半以上,而且又是技术难度最高的部分。他莞尔地对我说,要说实话吗?他的结论是国内的表现最好,而且价格最具有竞争力,台湾生产的及美国的次之,美国厂商因为是IDM,最好的基板大都留给自家用。几个月前有2则新闻吸引我的注意,一则是德国英飞凌(Infineon)与国内的山东天岳、北京的天科合达,签订碳化矽基板长期采购合约,现阶段供应6寸晶圆,而未来将是8寸。2家公司是目前国内碳化矽基板的主要供应商。另一则新闻是欧洲的意法半导体(STM)与厦门的三安光电,计划在重庆建1座8寸碳化硅片厂,剑指国内蓬勃发展中的电动车产业。三安也规划自建1座8寸碳化矽基板的生产基地。英飞凌与意法,占碳化矽元件及模块全球市场50%以上比例,而意法更是率先在2018年供应Tesla Model 3碳化矽元件,此举正式引爆碳化矽风潮。目前全球碳化矽基板的需求量每年约50万片,以6寸为主流,七成以上由美国的2家厂商所供应。国内市占率大概10%,但是随着产能逐渐开出,以及国内在电动车的强劲需求,预估国内碳化矽基板的全球市占率,很快会超越5成。现在碳化矽产业目光的焦点在于8寸晶圆开发,传统6寸以下的成长单晶柱(ingot)的方法,是使用蒸气的昇华法,将6寸的seed wafer置于上端,利用高温炉内材料的蒸气附着于上端晶圆的表面,而得以成长晶柱。此方法最大缺点,乃晶柱成长速度慢且晶柱长不厚,若运用此法在成长8寸的基板,将更形捉襟见肘。上述国内的2家供应商已开始使用新的液态成长法,来成长碳化矽8寸晶柱。此法较接近一般硅片的晶柱成长,在上端可以使用较小尺寸的seed wafer来成长8寸的晶柱,由于不需要到气态,成长的温度也可以较低,同时速率较快,晶柱也可以厚些。但是液态成长法需处理液态材料与固态晶柱的界面,在温度梯度的控制要非常精准,这恐怕不是一般商用炉子能做到的。因此推论国内供应商已经具有自建精确温度控制炉子的能力,事实上一家产能够规模的碳化矽基板厂商,是需要上千台的高温长晶炉,因此自建高温炉是必要的选项,这方面国内的供应商是做到了。我们再来谈另一个第三类半导体氮化镓(GaN)。不久前的一则新闻,美国一家氮化镓元件主要供应商EPC,向美国联邦法院及国际贸易委员会(ITC),控告国内的英诺赛科侵害其在氮化镓元件的专利。事实上英诺赛科从2023年第1季开始,其在氮化镓元件的营收已经跃居全球首位,其在珠海及苏州各有1座8寸氮化镓专属的晶圆厂,以及超过20部有机金属化学气相沉淀设备(MOCVD)成长氮化镓的磊芯片。目前月产能为1.5万片,占了全球总产能一半以上,预计在2025年英诺赛科产能要扩充到每月7万片,以此推估需要70部MOCVD机台。英诺赛科有别于其他主要氮化镓供应商,其商业模式是IDM,在成本上相对是有优势。相同的元件规格,比其他供应商的价格低30~50%。氮化镓元件在2年前,因为65W的手机快充电源插头热门一时,如今市场比较低迷。但是近来在人工智能(AI)服务器所需的直流电源转换,对于中低压氮化镓的需求正在崛起,这部分需要操作在较高的切换频率,及更大的输出电流,正符合到氮化镓的物理特性。如果氮化镓的价格有机会降到略高于矽基功率元件,毫无疑问氮化镓的需求是会起飞的。在第三类半导体研发上国内也是不遗余力地投入。以大学为例,几所着名的大学,如北京清华、浙江大学、西安交大、成都电子科大,甚至南京航天,都成立关于第三类半导体的研究群,训练出众多的硕博士生投入相关的产业。每年IEEE功率半导体最主要的会议ISPSD,国内的高校在第三类半导体的议题上,贡献一半以上的论文。国内第三类半导体厂商的确接受政府为数不少补助,才得以建立今天的产业规模。从已公布的财报而论,山东天岳及天科合达本业都是亏损的,英诺赛科离损益两平是更遥远。在此情境下,各家仍卯足全力来扩产,似乎是不理性的行为。但是综观国内过往在太阳能、LED甚至锂离子电池,在市场还在萌芽之际,便积极地投入产能,只要这个产业的成长性是可被预期的,假以时日,国内拥有这产业的半壁江山,就具有充分话语权。台湾该如何自处呢?在此态势下。多年前个人就说明了,第三类半导体产业需要供应链的垂直整合,而在台湾却缺乏政策上有效的支持,现在再来谈,为时有点晚。我们只有期望在全球两大阵营的僵持下,我们想办法能左右逢源,但这可以维持多久呢? 
2023/11/24
神奇的韦伯红外线太空望远镜
2023年9月下旬,媒体报导韦伯太空望远镜(James Webb Space Telescope;JWST)探测到木星的第二号卫星(木卫二,Europa)的表面冰层,有二氧化碳的踪迹。科学家长期以来认为在木卫二及土卫二(土星的第二颗卫星),其表面冰层下因为引力的作用,存在着丰富的海水。这两颗卫星是太阳系内除了地球外,最有可能存在生命的星球。土卫二在先前已有NASA卡西尼(Gassini)太空船飞越,侦测到其表面有碳、氢、氧、氮甚至磷等,构成生命必要元素,而此次木卫二是经由太空望远镜的观测而获得。韦伯太空望远镜自从2022年发射升空后,除了提供了更遥远星际的清晰影像外,由于其主要观测的光谱位于近红外线(near IR;NIR,波长0.6~5微米),及中红外线(Mid-IR;MIR,波长5~28微米),可见光波长是在0.4~0.7微米,因此对于天文学家研究宇宙的形成、星系的演化及探测可能的生命,提供必要工具。除了影像的提供外,韦伯太空望远镜也内建分光仪,可以做光谱分析,恒星的发射光谱或者行星的吸收光谱,举凡二氧化碳、氢分子或者甲烷等,都逃不过它的利眼。韦伯太空望远镜是如何做到的?这个伟大的计划是为了接续第一代的哈伯(Hubble)太空望远镜而成立,从构想到实现超过20年的功夫,总耗费100亿美金,由美国、欧洲及加拿大三个太空单位合力所完成。韦伯太空望远镜是为了纪念美国在执行登月阿波罗计划时期,NASA的主管James Webb而命名。韦伯与哈伯除了侦测的光谱不同外,哈伯以可见光为主,两者所运行的轨道也不一样。哈伯是位于地球上空约550公里的高度,相当于现在低轨卫星的距离;韦伯太空望远镜却是位于离地球150万公里的超高空,是月球与我们距离的4倍远。为何会放在那麽远的太空?原来那个区域是个所谓被引力遗忘的角落。十八世纪2位伟大的数学家Leonhard Euler以及Joseph-Louis Lagrange,已计算出在地球运行的轨道面,有5个区域是太阳与地球引力互相抵消的地方,这150万公里的高空是离我们最近,且同时可以背对着太阳、地球及月球,可以避免三者所造成的光害。哈伯因位于低轨道,因此时时受到这三个星球不同引力的影响,需要使用燃料喷气,来调整望远镜本体的姿态及角度。韦伯没有此一限制,可以让望远镜的生命周期更久。但是低轨道的哈伯是太空梭可以抵达的地方,可以进行必要维修,韦伯可就没有这个福分了。记得哈伯在刚运作时,影像是模糊的,原因是镜片有2微米的误差,后来是透过太空梭及太空人实施必要更换,方能正常运作。韦伯的核心是NIR以及MIR镜头,这两段光谱是如何被吸收而转换为电信号,传回到地球?这里就牵涉到2种不同的半导体材料。作为红外线的光侦测器,这分别是NIR的碲化汞镉(Hg1-xCdxTe;MCT)以及MIR的Si(As doped)。MCT乃化合物半导体,一般大众所熟悉的化合物半导体是IV-IV(四四族)的SiC, SiGe,或者III-V(三五族)的GaAs、GaN,而MCT却是II-VI(二六族)。II-VI族半导体其共价键愈弱,而离子键愈强,因此不论在晶体或磊晶的成长,或是在制作元件上就更具有挑战性。这两种红外光侦测元件,分别是由2家位于美国加州,专业于光侦测器的公司所研发完成。MCT藉由改变x的组成,也就改变半导体的能隙(bandgap),因此可将光侦测元件的吸收光谱的临界值,由波长0.8微米(x=1)调整到5微米(x=0.3);Si(As)则是利用砷掺杂在矽半导体内,所需要的游离位能(30-40 meV),当作MIR的吸收能阶,使得元件得以吸收28微米的红外光。然而这2种红外光的侦测器,都得在极低的温度下操作,尤其是Si更是需要在绝对温度10K以下的超低温工作。韦伯在面对太阳的一面,温度常会超过摄氏50度,科学家们利用特殊的材料,制作出大面积且极薄的光罩版,阻绝太阳的光及热,使得在很短的距离内,温度可以下降300度,让这两类的红外光侦测器,才得以正常的工作。30年前当笔者刚任教于国立中央大学,参与部分中研院天文所的无线电天文望远镜的计划,时任中大校长的刘万亿汉先生就告诉我,天文观测所使用的技术都是最尖端的科技,刘校长本身是位太空科学专家。这件事发生在中研院的次毫米波无线电天文阵列上,也同时见证于韦伯红外线太空望远镜上。
2023/10/19
半导体与贝尔实验室
2023年7月28日台积电盛大地庆祝其永久性研发大楼的落成,过去台积电的研发中心都是跟着不同的厂区而迁移,逐水草而居,如今拥有永续基地。这栋大楼可容纳超过7,000名研究人员,而台积电的研发经费,多年来都占其营收的8%。以去年(2022年)超过730亿美元营收,研发经费就将近55亿美元。所以创始人张忠谋特别提到,台积电的研发经费,远远超过麻省理工学院(MIT)1年约20亿美元的研究经费。董事长刘德音在研发大楼落成庆祝仪式中,特别提到希望将台积电的研发中心,打造成台版贝尔实验室。贝尔实验室这座我学生时代心目中的科学圣地,是造就15位诺贝尔奖得主的殿堂,包括2位华裔的崔琦及朱棣文教授。研究半导体的学者若此生没到过贝尔实验室做过一段时间的研究,如同伊斯兰教信徒没去过麦加朝圣般。贝尔实验室的经费来自于母公司美国电话及电报公司(AT&T)。1982年全盛时期,贝尔实验室经费是16亿美元,员工2.2万名,其中博士学位者超过3,000人。当时AT&T年营收是347亿美元,占当时美国GDP的1.1%,所以贝尔实验室的研发经费是AT&T营收的4.6%。1984年因为反垄断法的关系,AT&T拆分7家独立的区域型电话公司,从此贝尔实验室的经费及重要性开始走下坡,如今已成为诺基亚(Nokia)旗下一员。众所周知晶体管的发明,诞生于1947年的贝尔实验室,除此之外MOS晶体管、非挥发存储器floating gate、半导体雷射,甚至于也拿过诺贝尔奖的CCD元件,皆出自于贝尔实验室,当然还有更多在半导体领域重要发明。延伸报导台积电全球研发中心启用 张忠谋透露台湾成全球兵家必争之地的关键 (新增影片)贝尔实验室从1940年代,一直到1990年代,在半导体领域的研究上一直是独领风骚。MOS晶体管以及其所衍生的CMOS,是所有集成电路以及分离器件中最被广泛使用的元件结构,于1959年由Mohamed Atalla以及韩裔的Dawon Khang(姜大元)博士在贝尔实验室所共同发明。MOS元件的特点在于,在晶体管的控制端—闸极(gate)金属下方成长一层薄的二氧化矽绝缘层,可利用绝缘层的电容来控制输出的电荷量,同时不会有电流流进闸极。当晶体管尺寸愈做愈小的同时,MOS所消耗的功率愈少,而操作的速度就愈快,成就摩尔定律,也造就今日世界。现今半导体两大存储器分别是DRAM以及Flash(NAND、NOR),DRAM是1966年由IBM所发明,其作用是将电荷储存在矽半导体所制作的电容内,并由电荷电位的高低决定记忆的位元是0或1。但是半导体内的电容很容易漏电,随时得补充电荷以维持记忆状态,一旦关掉电源记忆随即消失,故被称为挥发性存储器(volatile memory)。Flash是非挥发性存储器(non-volatile memory),即使无电源供应,记忆状态依旧保持。其中最关键的结构floating gate,是施敏教授(S.M. Sze)与姜大元博士于1967年提出。此架构是将储存电荷的闸极,完全包覆在二氧化矽绝缘层内,不会有漏电流发生,而电荷是利用量子穿隧效应(tunneling)注入进floating gate。据施敏教授口述,他是在实验室大楼自助餐厅看到鲜奶油蛋糕,在蛋糕内的层与层之间,涂了一层薄的鲜奶油,激发floating gate这个创意。此一重要创举,第一次投稿时却被学术期刊的编辑退件,最后是刊登在贝尔实验室所办的学术期刊内。谈论到施敏教授,必须得提他所着作的《半导体元件物理》(Physics of Semiconductor Devices)一书,该书是是半导体领域的圣经。我在研究所时读的是1981年的第二版,全书有880页。有一整年的时间对我而言,几乎是晨昏定省,从第一章第一节,研读到最后一章完。到后来整本书的封皮都剥落了,有时读累了就趴在书上小憩,书本中难免夹杂个人的汗水及口水。施敏教授是向贝尔实验室申请,全职来写这本书,这本书内容广泛且论述清晰,尤其参考数据非常丰富。《半导体元件物理》不仅是本教科书,也是做研究所需的入门书籍。据他本人描述,所收集的论文数据,堆起来有一个人高度。施教授写书的时候,在他的书桌旁放了一个字纸篓,如果他看不懂的文章就丢到里面。他说如果连他都看不懂,那很难有人会懂了。据统计在美国有4成科学家,其出生地非来自本土,相信在贝尔实验室的比例更高。Atalla出生地是埃及,姜大元博士是韩国,施敏教授出生于南京,在台湾完成大学教育。即便连两位因CCD发明而获得诺贝尔奖的 Willard Boyle及 George Smith,前者也来自于加拿大。惋惜的是在韩国被视为国宝的姜大元博士,不幸于1992年在结束学术会议,返家途中昏倒过世,否则也极有可能获得诺贝尔的殊荣。最后,我们祝贺台积电研发中心的落成及运作,也期望一如贝尔实验室能吸引国际一流人才进驻,引领半导体相关领域的研究,迈入下一个新纪元。 
2023/9/27
AI风潮引爆矽光子应用
2023年9月的SEMICON Taiwan会议中,矽光子(Si photonics)技术引起热烈讨论。在9月5日「矽光子国际论坛」中,笔者也受邀与台积电、日月光、工研院、美国Cisco及日本爱德万测试(Advantest)的专家同台,主持人是日月光CEO吴田玉,共同讨论矽光子技术在人工智能(AI)时代中,所能扮演的角色。以下是个人在这个议题中,所表达的看法。众所周知,矽光子技术已经发展超过20年,主要是利用CMOS成熟制程,将处理光信号所需的光导管、调变器、光栅、耦合器,甚至光侦测器等主被动元件整合在矽基板上。目前唯一无法整合进矽基板者,是半导体雷射,因为涉及到不同的材料系统,只能以封装的方法处理。矽光子基板负责将光的信号转换为电信号,此为接收端,发射端就是将电信号经由雷射转换为光信号。由于使用成熟半导体制程,在微小化、整合度、量产的良率,甚至成本都具有优势。再加上使用光信号,对比于电信号,又有着高带宽、低延迟(low latency)以及低功耗的优势。自从光纤通讯在1980年代被引进之后,一直担任信号传输的角色。初期在人类使用数据量还不大的时候,光通讯运用在长距离的传输,如海底光缆、大都会地区的网络。随着数据量的提升,光通讯开始进入区域网络。近来生成式人工智能(generative AI)的兴起,最大的数据产生及传输量是发生在AI服务器之间,因为任何一个大型的模型,都包含数百亿个参数,而每次训练所要花费的算力是惊人的,这些都依赖芯片彼此间的平行运算以及数据交换。拜半导体先进制程之赐,目前处理或计算1个指令,只需要1~2 nsec的时间;但是数据传输速度的增幅,却永远跟不上算力的增加。光是在光纤内运行1米距离会产生5 nsec的延迟,因此AI服务器的算力有相当的时间在等待数据而停滞。若改用电信号来传输,等待的时间就更久了。解决之道当然就是将转换光信号的装置,愈靠近CPU/GPU/ASIC芯片愈好,以改善信号延迟,这中间最好避免掉电路板。因此,co-package optics(CPO)包含矽光子基板,便应运而生。CPO目前主力是放在交换器(switch)内,将矽光子基板与处理电信号IC芯片,以堆叠(stacking)的封装方式结合,再连接上光纤,比邻于各式IC处理器,这就是最靠近及最低延迟的选择方案了。在2000年代中期,IBM在其年度的技术展望(Technology Outlook),特别提出光连结(Optical interconnect)为未来技术的重点。IBM非常自豪于技术上的预测,也表示自己从来没有预测失败过,有的只是发生时间的早晚。彼时并不知道会有AI运算的蓬勃发展,也不清楚半导体的技术会进展到3纳米以下。但是很明确的是,人类在数据传输的使用量会持续地增加,而矽光子技术将在光连结上扮演重要的角色。当时光连结的提出,也不清楚是会发生在芯片与芯片间(chip to chip)信号的连结,还是载板之间(board to board)信号的连结,或者是服务器架间(rack to rack)的信号连结。如今服务器架间的信号连结,甚至于架上的层与层之间(unit to unit),已经广泛地采用光连结技术。而芯片之间信号的连结,已经被台积电的先进封装技术3DIC/CoWoS/chiplet/fabric,使用电信号交换给解决了。接下来的重头戏会是载板之间的信号连结,目前的主力还是使用电信号的连接,至于光的连结就拭目以待。CPO结合矽光子技术,提供AI风潮中提升数据传输速度的最佳解决方式,这对于产业生态链却是一个巨大的改变。传统使用插拔(pluggable)光模块的生态系,并不会坐以待毙。在今年(2023)的全球光通讯大会(OFC)上,linear-drive pluggable optics(LPO)即受到广泛的注意,被视为传统势力的一大反扑。Linear-drive的概念是拿掉插拔光模块内re-timer/DSP功能,而增加在ASIC内信号处理的负担,如此便减低模块内的信号延迟及功耗。因此之故,可以再往前推进1~2个时代的产品,而整个产业生态链不会有太大的变化。如同半导体制程所使用的浸润式DUV微影设备,在不改变DUV曝光机的生态下,又往前推进几个时代,直到EUV曝光机接手。矽光子CPO的时代终究是会来临,若LPO顺利推展,可能会使发生的时间延后。事实上,linear-drive的概念亦可以使用在CPO上,如此不论在信号延迟及功耗上,又会有更佳的表现。本文感谢与郑鸿儒博士的讨论。
2023/9/15
科学家,核子武器与政治
利用周末时间观赏刚上映的电影〈奥本海默〉。在当学生的时候,就听闻过「奥本海默事件」以及在美国的「麦卡锡主义」(McCarthyism),但这次是以奥本海默(J. Robert Oppenheimer)本人为中心,以电影手法完整地交代事件始末,包括二战期间制作原子弹的「曼哈顿计划」(Manhattan Project)。在二战前,整个学术的重心都在欧洲。Oppenheimer在完成哈佛大学学业后,就负笈欧洲,最后在量子力学大师Max Born的指导下完成博士学位。通常博士候选人,都会被口试委员严格且钜细靡遗地拷问,其目的是要让新科的博士们知道:你的学术生涯才开始,不要太得意。但据闻Oppenheimer的口试很快就结束,其中一位委员说,还好我溜得快,Oppenheimer已经开始质疑口试委员了,由此可见其桀傲不逊的个性。曼哈顿计划是由爱因斯坦(Albert Einstein)具名,写信给美国罗斯福总统(Franklin D. Roosevelt),忧心纳粹德国已经领先发展毁灭性核分裂武器所衍生而出,并由Oppenheimer担任制作原子弹的计划主持人。然而在第一颗原子弹还未试爆完成前,纳粹德国就投降了,但日本还在顽强抵抗中。当时科学界开始游说,希望停止曼哈顿计划,但接任罗斯福的杜鲁门总统(Harry Truman),为了减少美军在太平洋战争的损失,先后丢掷2颗原子弹在日本的广岛与长崎。片中有一段叙述Neil Bohr访问洛色拉莫士(Los Alamos),带来纳粹德国在发展核子武器的最新信息,而纳粹计划主持人正是另一位量子力学大师Werner Heisenberg。Heisenberg在核分裂的理论计算上犯了个错误,导致纳粹原子弹的发展受挫,而他本人在二战后表示其有意拖延纳粹在这方面的进展,但这至今仍是个科学悬案。美国最后能领先纳粹德国制作出原子弹,除了Oppenheimer主持的曼哈顿计划外,另一位关键人物是意大利裔的费米(Enrico Fermi)博士。费米博士恐怕是物理学史上,最后一位在理论与实验都有杰出表现的科学家,就如同棒球场上的二刀流。费米博士在芝加哥大学足球场看台的地下室,建立核子分裂的反应堆。在最后关键时刻,他亲自核对计算及调整实验的反应堆,完成了人类第一次能够控制且持续核子分裂的链锁反应。实验成功之后,对外所使用的暗语是意大利航海家登上新大陆。芝加哥大学在足球场原址也立了个纪念碑。Oppenheimer最终在战后因被认定为共产党的同路人,而被剥夺在原子核领域接触新知识与发展的权利。影片中的泰勒博士(Edward Teller),被誉为氢弹之父,在曼哈顿计划与Oppenheimer有不同的意见,执意要发展核融合的氢弹,导致他在战后Oppenheimer的听证会上,做出不利于Oppenheimer证词,而后不见容于学术界。泰勒博士本人在四十多年前,曾受邀访问台湾,全程由浦大邦博士陪同,访问全台多所大学。当时我才大三,但有机会与泰勒博士近距离的接触,并得到签名及合照,他非常津津乐道与杨振宁教授的师生关系。在当时战后的芝加哥大学,杨教授原本希望跟费米博士研习实验物理,因为要建设国内需要实作为基础,但无奈其动手做实验的火候不够,最后泰勒博士说服杨振宁教授跟他做理论的计算。当时,我们曾问泰勒博士在研究过程中,是否会因遭受挫折而产生低潮,他的回答居然是,我从没经历过低潮时刻。无独有偶地,旧苏联时期的物理学家Andrei Sakharov,因为从事氢弹的开发,被誉为是苏联的氢弹之父。之后他本人开始致力于限制核武器的扩散,成为人权斗士,却不见容于苏联当局,而长期被软禁在一小公寓内。他于1975年获颁诺贝尔和平奖时,苏联甚至拒绝他出境领奖。不论是Oppenheimer、Heisenberg以及Sakharov,这几位参与毁灭性核子武器的科学家,当初都基于爱国情操而参与,最终却是由政治凌驾一切。Oppenheimer在甘乃迪(John Kennedy)总统时代被平反,而Sakharov在戈巴契夫(Mikhail Gorbachev)当政时也被平反了。但是迟来的正义会是正义吗?李远哲院长有次在访问以色列,晚宴席中他请问邻座政坛人士,如何解决以色列与巴勒斯坦间的问题?对方回答,你们科学家就只想要解决问题,我们政治人物是要与问题共处的。试想如果问题都解决了,就不存在政治人物了。爱因斯坦在美国使用原子弹结束二战后接受访问说,没想到他们政治人物真的使用原子弹,我宁可去当个修表匠,内心充满着无奈。
2023/8/1
国内管制镓出口对供应链的影响
日前国内政府无预警地宣布,镓与锗金属将采行出口管制。顿时媒体大篇幅报导,尤其着墨于这是国内政府对美、日及欧洲,在半导体上的诸多对国内限制的一项反击。镓与锗都是半导体领域中重要的材料,尤其是国内产量占全球8成以上的镓,更具有关键的地位。整个供应链开始嗅到紧张的氛围,担心供货受到影响。化合物半导体中,砷化镓(GaAs)、磷化镓(GaP)及氮化镓(GaN)都需要使用镓的金属,相关的产品则包括5G手机RF功率放大器、宽能隙功率元件、LED及半导体雷射等电子及光电元件,影响所及不可谓之不钜。镓对供应链的影响可分为2类,其一为基板,另一则是磊晶层。基板的厚度通常在500微米,而磊晶层厚度则在几十微米,甚至10微米以下。磷化镓基板使用量较少,而氮化镓没有基板,所以在基板的供应上,就以砷化镓为大宗。日本的住友(Sumitomo)、美国的AXT以及德国的Freiberger,为主要的供应商;3家业者主宰砷化镓基板全球市场已超过30年,是个稳定且成熟的市场,每年的产值大约3亿美元。近10年来国内的红色供应链,已开始进入砷化镓基板的市场,台湾的晶圆代工及LED厂已有使用,品质及价格都有竞争力。倘若国内开始管制镓的出口,短期内上述的3家公司会受到些影响,但对整体供应链影响不大。国内供应商要扩充砷化镓基板的产能,并非难事。镓金属在磊晶的供应链上,国内能发挥的影响力就更弱了。因为几乎所有相关的磊晶层,都是经由有机金属化学气相沉积(MOCVD)来完成,而参与反应的主要化学品为三甲基镓(Trimethylgallium;TMG),TMG的供应商都来自欧美及日本。若国内管制镓的出口,首当其冲的会是国内上千台的MOCVD,以及整个化合物半导体产业。谈完了镓,我们来看看氮化镓的供应链。Yole最近的报导指出,国内英诺赛科的氮化镓元件产值,在2023年第1季首次超越PI、EPC、Navitas等美国为主的元件设计公司,而且英诺赛科是自有的8寸晶圆厂,产品涵盖高压及中低压元件,并以IDM的方式与使用6寸晶圆代工的上述美国公司竞争,高下自然不言而喻。过往晶圆代工厂,为了让老旧的6寸厂有新的商机,因此引进氮化镓元件。然而十几年过去了,6寸厂在良率及成本上,一直无法有效改善,导致现今氮化镓最大的瓶颈,就是价格过高,市场开拓有限。英诺赛科的商业模式,在初期虽然有相当大的资本投入,但未来的营运是会渐入佳境,我们且拭目以待。氮化镓是一个卓越非凡的半导体材料,不仅是因为其具有宽能隙特性,还有1项特质是其他种类的半导体所没有的。一般的半导体,每产生1颗电子,就会伴随1颗带正电的离子产生,当我们希望元件内有更多的电子或者电流,正离子就更多,电子会遭遇到更多的散射(scattering),电子迁移率便降低了,最后导致电流增加的有限。氮化镓元件内的电子,是由晶体的极性(polarization)以及磊晶层之间的应力所造成,因此没有正离子,所以既使存在很高的电子浓度,电子还能够维持相当的迁移率。这对于元件的导通电阻及切换速度,都有着显着的改善,这正是电源转换系统最重要的两个特性。个人之前的文章,曾以此两种特性,对比于矽基板元件。在650V元件,氮化镓拥有矽元件的10倍优势;到了100V元件,此优势降为3倍;30V元件优势仍然有30%。所以氮化镓元件应该被广泛使用于电源转换系统,然而现今最大的障碍就是成本,氮化镓的成本要能够降为一半,就非常有竞争力了。这有赖在供应链上使用8寸的晶圆厂,以及增加MOCVD每台的磊晶产能。国内政府对于镓的出口管制,是经过深思熟虑的决定。一方面可以雄壮威武地回应西方国家及日本的制裁,但另一方面却不会对产业链造成过多负面的影响。毕竟国内对于化合物半导体产业,是有完整的战略布局。 
2023/7/11
纪念锂离子电池奠基者John Goodenough
2023年6月25日,媒体报导美国德州大学教授John Goodenough过世消息,享寿100岁。第一次注意到Goodenough是在2019年,瑞典皇家科学院宣布该年度诺贝尔化学奖,表彰3位杰出科学家在锂离子电池研究的贡献,而Goodenough与来自英国的Stanley Whittingham以及日本的吉野彰,共同获得此殊荣。首先我注意到的是他的姓氏,他要如何地介绍自己?I am Goodenough?其次是他得奖时已高寿97岁,是历届诺贝尔得主中年岁最长的一位。Goodenough在锂离子电池最基础的贡献,完成于1970~80年代,也历经40余年才终而获奖。事实上在诺贝尔奖的历史中,有人是因为不幸离世而失之交臂。其中最令人扼腕的是在2000年的物理奖,颁给IC的发明人Jack Kirby,而另一位共同发明人Bob Noyce却已于1990年,在美国德州住家,游泳时心脏病发去世,享年62岁。因此,Kirby在诺贝尔委员会的官方文字记载的是「for his part in the invention of integrated circuit」。锂离子电池因为锂是最轻的金属,且又是在周期表上第一族的元素,有着相当高的电化学反应活性。相较于传统的铅酸及镍氢电池,以锂离子及电子作为电池内部导通的电池,有着轻量化及高能量密度的优势,所以广泛地使用于移动设备及电动车,甚至于储能系统。第一个锂离子电池雏型是由Whittingham于1970年所提出,当时是以锂金属作为负极材料,而以金属硫化物作为正极材料。由于锂金属的活性,电池相当容易燃烧爆炸。Goodenough改用金属氧化物作正极材料,添加钴、锰等金属,一方面改善电池安全性,同时也大幅地增加电池能量密度,也就是建立当今最广泛使用正极三元镍钴锰(NCM)材料的原型。日本学者吉野彰的贡献在于,使用石墨碳作为负极材料,取代锂金属,更进一步改善电池安全性,并增加电池充放电的寿命。有了这一连串突破性的发展,Sony于1991年正式推出第一颗商品化的锂离子电池,从此改变世界。Goodenough是位大器晚成的学者。当他大学毕业时,还被徵召到欧洲参与二战。之后他进入美国芝加哥大学攻读固态物理博士,与杨振宁教授是同学,杨教授最近也刚过100岁生日。Goodenough早期在50年代的研究,以过渡金属磁性氧化物材料为主,应用于磁性记忆元件,包括铁钴镍的各式氧化物。Goodenough是在54岁之后才开始研究电池材料,也因为之前有着无机金属氧化物的基础,得以很快地在锂离子电池的正极材料,做出重大贡献。在美国大学教授是可以不退休的,Goodenough在90多岁的高龄,依旧活耀于学校的实验室,并指导学生。他晚期的研究聚焦于全固态电池的开发,也就是用固态材料取代现行的液态电解液。此全固态电池,不仅可以更进一步地增加电池能量密度,电池寿命的延长,同时充电的时间也可以大幅缩短。Goodenough虽然在锂离子电池上,有着卓越的贡献,但是终其一生,却没有得到任何商业上所衍生的利益。在Goodenough之前,诺贝尔奖最高寿的得主是,获得2018年物理奖的美国贝尔实验室 Arthur Ashkin,当年他已经是96岁,因为optical tweezer的发明而获奖。Ashkin在得奖后,对媒体说他抽不出时间接受采访,因为他正忙于太阳能的研究。也许就是因为全心投入所喜爱的研究工作,使得这些研究人员得以延年益寿,不知老之将至。 
2023/7/4
米德教授奇人奇事
在Chris Miller所着《芯片战争》(CHIP WAR: The Fight for the World’s Most Critical Technology)一书中,多次提到Gordon Moore(1929~2023)与加州理工学院(California Institute of Technology)米德教授(Carver Mead)的互动。在1965年,当Moore还在快捷半导体(Fairchild),手绘出从1959~1965年每一矽芯片中晶体管成长数字,总计只有5点数据,并预测未来成长会依照每1.5~2年以1倍的速度增加。Mead教授当时是快捷半导体的顾问,随即将此称之为「摩尔定律」(Moore's Law)。Mead曾回忆,当时他正在研究半导体内电子的量子穿隧效应(tunneling effect),在此事后没多久Moore就问他,穿隧效应要在很小的尺度才会发生,那晶体管可以做到多小的尺寸?Mead花了些功夫答覆此问题。1968年,Mead提出晶体管尺寸微缩理论(scaling),也就是在MOS晶体管的闸极长度微缩同时,每一晶体管所需耗用的功率是与长度成平方的下降,同时晶体管速度却等比例增加—即晶体管效能是随着晶体管闸极长度微缩,而呈现3次方的改善。当Mead在学术会议上,报告MOS微缩理论时,并预测未来1个芯片上可以有上亿个晶体管存在,并没有多少人相信Mead的理论。当时认为在这麽小的尺寸下,光是所产生的热即足以烧毁整个晶体管。事实证明Mead是对的,Moore's Law横跨超过50年时间,最主要的基石在于尺寸的微缩,而Mead的理论提供Moore's Law的理论基础。Mead在1970年代初期,即洞悉未来芯片上可以制作出众多的晶体管,代表将拥有庞大的算力,其也因此建议英特尔(Intel)高层,发展电脑所需的芯片。不过,如何有自动化的IC设计工具,处理日益复杂的电路设计,成为一个关键议题,Mead的研究随即转向IC设计。Mead于1970年在加州理工学院开设VLSI课程,在课堂上并将学生所设计的各式IC,用统一的光罩,手刻出布局图,最后完成硅片的制作。这比国内芯片设计中心对学术界的服务,整整早了20年。Mead与Lynn Conway于1979年合着的Introduction to VLSI System,更是IC设计者手中的圣经。Mead在1970年代初期,即投入Si compiler的研究,这是电路模拟及布局图自动化的滥觞,造就现在EDA工具的产业。Mead更于1979年提出未来半导体产业,会由多数的IC设计公司(fabless),及较少数目的晶圆厂(foundry)所组成。这与同时期张忠谋先生,在德州仪器(TI)内部所提出foundry概念,不谋而合。笔者在美国求学时,即久仰Mead大名。因为笔者的研究题目是化合物半导体的微波高速元件及集成电路,第一个发明出此类元件(1965年出现的GaAs MESFET)的正是Mead。化合物半导体很难成长出优质的氧化层,不像硅片有高品质的二氧化矽,所以化合物半导体只能利用金属作为闸极,直接接触到半导体。此接触(junction)因为材料不同,衍生很多的界面缺陷,因此电子几乎无法在通道内(channel)运行。Mead很技巧地利用此接触所产生的空乏区(depletion),来控制电子数量,也由于电子远离界面,所以能够自由地运行。至今我们在无线通讯所使用的高频元件,其运作方式依旧是使用Mead的原创。Mead在2000年后,又回到基础物理研究,尤其是量子的电动力学及重力理论。Mead似乎可以在不同的学术领域,来去自如,悠游自得。Mead于2022年荣获日本的京都赏,奖金是5,000万日圆。京都赏是由京瓷(Kyocera)已故创始人,稻盛和夫于1984年所创立,奖励全球对于前瞻技术、基础科学及人文艺术等3个领域有杰出贡献人士。华裔科学家邓青云博士,发明有机发光二极管材料,于2019年获得京都赏;国内清华大学信息科学教授姚期智博士,也于2021年获此殊荣。Mead的学术研究,由基础的半导体元件,到IC compiler的原创,以至于VLSI设计,对于半导体相关的领域做出重大贡献,在学术界还无人能出其右。他的洞察力及远见,更激发整个半导体产业的发展,终究造福大众。
2023/6/2
Tesla减少碳化矽用量 替代方案有解
近期外电及本地媒体大幅报导Tesla宣告将减少电动车中碳化矽(SiC)元件的使用量,并造成了几家SiC供应商顿时股票大跌,包括Wolfspeed、意法(STM)、安森美(Onsemi)及英飞凌(Infineon)等。接下来随即即有专家开始讨论,Tesla是如何达到减少75%的SiC用量?半导体功率元件跟摩尔定律最大的不同在于,IC每进入一个新的制程节点,面积就会缩小一半,功率元件远远做不到。于是就有不同的组合被提出来,包括由原先的平面式(planar)SiC MOS晶体管,改为先进的沟槽式(trench)晶体管;或者因为电动车的电池系统要由400V改为800V,SiC MOS耐压也要由650V挺进到1200V,由于电流可以减少一半,SiC MOS芯片面积得以等比例减少。但是,再怎麽算也到不了减少75%。最后只得加上马达所需功率的减少,才勉强可以凑足。可是Tesla同时又宣布,未来马达设计不使用稀土元素,这使得马达效率的提升更形困难。Tesla此举的目的是要降低成本,以建构与其他竞争者的障碍。但不论就使用沟槽式或1200V SiC MOS,的确芯片面积是可以减少,制程却变复杂,实际成本下降反而有限,再加上这些都是所有竞争对手知道的趋势,因此这会是个假议题吗?在提出个人解答之前,笔者想先谈一下制造产业的学习曲线。陈良榕先生在友刊的文章中提到,张忠谋在德仪(TI)及台积电,就是利用学习曲线创造出与竞争对手的差距,这在以制造为导向的产业是非常的重要。试想一个资本摊提完成的半导体厂,不仅成本最低,良率最好,同时单位的产出也最多,而新进竞争者,还在学习曲线的初期,是看不到台积电的车尾灯。Tesla现在也是利用所经历学习曲线的优势,来创造竞争优势,而逆变器(inverter)所使用的SiC MOS就是个可以发挥的项目,因为价格不斐。个人的浅见认为,Tesla是使用Si IGBT(insulated-gate bipolar transistor;绝缘栅双极性晶体管)取代SiC MOS,并使用SiC二极管(Schottky diode),作为IGBT所需的飞轮二极管(freewheeling diode;FWD)。晶体管分为两类,一为双极性(bipolar),另一为单极性(unipolar),也就是MOS。双极性晶体管中电流与电压之间的关系是指数函数(exponential),而MOS晶体管电流与电压是1~2次方关系。所以双极性晶体管在输出电流驱动的能力是大于MOS,但是双极性晶体管是靠输入电流来工作,MOS则依靠绝缘栅极的电压来动作,故双极性晶体管比较耗电。IGBT的诞生即结合此二者优势,在输入端使用绝缘栅极(insulated-gate),而输出保留高输出电流的特性(bipolar)。逆变器主要的应用在于将电池的直流电转换为三相交流电,用以驱动马达。晶体管在此是作为电路的开关,MOS因为是对称的元件结构,可以处理逆向流过的电流。但是IGBT的元件结构不对称,需要额外并联1个FWD。以SiC二极管作为FWD,可以大幅提升其效率,同时IGBT的高输出电流能力,也可以提高逆变器的转换效率。Tesla在Model 3使用SiC MOS之前,也是使用Si IGBT以及Si FWD,现在只需将Si FWD改为SiC。IGBT的缺点在于操作频率较低,无法高温操作,且耐压不如SiC MOS,但这些在现行电动车系统,皆非严重问题。由于二极管电流与电压的关系也是呈指数函数变化,再加上现行Tesla每一相开关是使用2颗SiC MOS并联,笔者估计在相同输出电流条件之下,使用SiC二极管的芯片面积,应该可以是 SiC MOS面积的25%。而二极管是制程最简单的半导体元件,也最便宜,所以在SiC的费用上可以下降到原先的10~15%。只是还须加上个Si IGBT,因此总成本可为原先的30-40%。Tesla拥有别家车厂没有的学习曲线,要拉大与竞争者的差距,如果笔者是Elon Musk,选择Si IGBT加上SiC二极管的排列组合,降低SiC整体用量。
2023/3/30