智能应用 影音
EVmember
ST Microsite

矽光子的发展与挑战 (一):电子与光子

光子技术也早已应用于读取/储存信息及传递信息。前者如以前的光盘,后者如现在于网络的光纤通讯。但是这与近代文明的核心—半导体有相当的距离。

自然界基本作用力有4种,由强至弱排列:强作用(strong interaction)、电磁作用(electromagnetic interaction)、弱作用(weak interaction)以及重力作用(gravity)。20世纪以及21世纪的文明,除了核能与强作用相关外,主要是由电磁作用的应用所铺展开来的。 
 
电磁作用的基础理论是电动力学(electrodynamics),马克士威尔方程序(Maxwell’s equations)就是其中描述电磁场与电荷、电流作用的基本方程序。在现在人类文明已能处理个别粒子行径的当下,量子现象变得格外重要。能处理量子现象的电磁学叫量子电动力学(Quantum ElectroDynamics;QED)。 
 
QED是最基础的理论之一,人类知识领域的最前沿。至今所有的实验数据与QED的理论预测完全符合,实验与理论精确度的竞赛都已经较劲到小数点后12位了!说QED是人类文明坚实的柱石一点也不为过。 
 
QED理论中有2个主角:电子与光子。前者扮演的角色比较单纯,就是有质量、带电荷、有自旋(spin)的粒子;后者除了本身是粒子外,也是产生电磁作用的中介。 
 
电子,或者电子集体移动的电流,我们感觉上比较熟悉,是我们在材料中容易操控的物质。它们被用来当成携带/储存信息的载子(carrier)。譬如将电容上有无电荷存留的状态,当成1或0;或者将晶体管中有无电流流过,当成1或0。控制电子状态的手段通常是电压,这也是电磁学中的一员。电场和磁场是光子的组成份子,但是单纯的电场或磁场不能自由移动,无法当成信息的载子。 
 
我们习惯的电子载子操控方式是让电子在金属中流动,电子在金属传导的过程中不断地与金属原子晶格碰撞、产生热能,这就是焦耳加热(joule heating)。当摩尔定律走到原分子尺度时,金属线愈发细微—电阻更高,而芯片要传递的信息量更大,焦耳热的问题变得无所不在,从芯片内、芯片之间、系统内乃至于系统之间,任何信息的移动都生热量。

如何降低发热、加强散热变成计算力进一步提升的主要挑战。寻求另外形式的载子以避免或降低焦耳热的产生势在必行。 

光子技术也早已应用于读取/储存信息及传递信息。前者如以前的光盘,后者如现在于网络的光纤通讯。但是这与近代文明的核心—半导体有相当的距离。是否有办法整合光子入半导体的体制、承担信息载子的任务,成了目前的研发方向。 
 
光子在传递的过程中理论上不会发热,而且传递信息速度比电子快了近100倍,这是它被考虑成另类信息载子的首要原因,这优势在线上光纤通讯中已得到充分的展示。 
 
另外,光子的自由度极为丰富。目前用光子元件调制(modulate)光以编码(encode)光擕带信息的自由度有强度(intensity)、相位(phase)、频率、方向、波长等。但其实光还有时间段(time-bin)、轨道角动量(Orbital Angular Momentum;OAM)以及极化(polarization)等自由度可以用来编码信息。一个光子经光元件调制后最多可以有144个状态,这是不久前在光子的量子纠缠实验中所展示证明地。光可以携带巨量信息,但这也是目前将光纳入半导体信息处理体制的挑战之一。 
 
光子还有一个劣势,就是光子和光子之间不会交互作用。本来用光子来控制、调制光子是最理想的状况,但是由于这个因素,对于光子的调制必须透过物质来进行。特别是对于光子主动元件(active devices,能改变光子的频率、波长、自我聚焦等效应)要以非线性光学材料(nonlinear optical materials)来组成。而这些非线性效应一般来说是作用的高端效应,作用较弱,需要以另外的手段来加强,这使得光子元件的尺寸一般都相当大。这是光子的优点所伴生的缺陷。 

 

现为DIGITIMES顾问,1988年获物理学博士学位,任教于中央大学,后转往科技产业发展。曾任茂德科技董事及副总、普天茂德科技总经理、康帝科技总经理等职位。曾于 Taiwan Semicon 任谘询委员,主持黄光论坛。2001~2002 获选为台湾半导体产业协会监事、监事长。