智能应用 影音
hotspot
Event

纳米压印的初始应用 (一):技术与挑战

纳米压印是半导体制造中将线路设计图案转印到晶圆的方法之一。

最近Canon发布可以达5纳米制程节点的纳米压印机FPA-1200NZ2C 。纳米压印是半导体制造中将线路设计图案转印到晶圆的方法之一,另一个为人熟知、也是目前产业界中用以量产的主流方法是曝光机。 
 
纳米压印的方法其实很简单,就像用木模板转印图案到红龟粿上一样。

红龟粿模板是阴刻,1:1的将龟的图案压在煮熟的糯米粉团上,压印后的图案是阳刻的。这其中没有像曝光程序中牵涉到光源、光学系统、感光、显影、蚀刻等复杂的过程以及精密昂贵的设备,所以晶圆处理程序价格相对较低似乎是理所当然。 
 
关键的技术是压印模板的制造,以及前文中以糯米粉团所比拟的高分子树脂(polymer resist)及整个压印过程。压印模板与欲转印的图型是1:1,所以在制造模板时要有至少与在晶圆上欲转印的图案一样精细的分辨率,这用来塑造模板图样的工具自然是电子束(electron beam)。电子束是半导体业用来在光罩上形塑线路图样的主要工具。 
 
电子的德布罗意(de Broglie)波长是0.08纳米,也就是说电子束理论上的分辨率就是在这数量级。对于任何目的的刻画,这都远超过所需要的精度—这比原子都小! 
 
问题是被电子束用来呈像的物质会与电子发生作用,因此电子束刻画的分辨率极大程度的依赖于使用的物质。目前电子束的分辨率大约在5~10纳米左右,这对于5纳米制程实际的临界尺寸(critical dimension)14纳米便够了。纳米压印还预告未来可以推进到2纳米制程节点,它实际的临界尺寸是10纳米,也还在目前电子束分辨率可触及的范围之内。 
 
以电子束刻画的模版是母板(master plate),接下来就是大量复制。说「大量」一点也不夸张,因为目前纳米压印机每小时产量(throughput)就只有100片上下—这大概只比EUV刚推出时的产量稍高,而模板可以使用的次数在几千次的数量级,大概是几天就得更换。 
 
在纳米压印之前,基板需先滴有高分子树脂(polymer resist),与基板上粘合层(adhesion layer)充分ˇ浸润(wetting)。之后就是将模板压在布满高分子树脂的晶圆,藉压力及毛细现象让树脂延伸入模板图形之中。然后用紫外光固化(UV curing)树脂,取下模板。 
 
纳米压印过去技术发展的挑战和上述的压印程序和使用的物质有直接的关系。过去的几大挑战分别为覆盖(overlay)、产量、缺陷率(defectivity)和粒子。 
 
覆盖是指元件上下不同层间结构的对齐问题,在纳米压印制程中会产生覆盖问题的原因之一是压印过程中树脂被压印而扭曲或变形,以致于上下层之间的相应结构无法对齐。

此为纳米压印过去在技术上常被诟病的地方。 

延伸报导Canon新NIL系统成本优势 有利芯片制造大众化发展
又譬如纳米压印的产量其实取决于树脂滴(resist drop)的大小、扩散速度以及跟基板粘合层的浸润速度,此基本上是材料特性的问题。 
 
这些问题在过去发展的30余年间主要由物质的改善以及一些辅助的机制,譬如上下层对准校正等,这些问题获得相当程度的改善,纳米压印因而逐渐步入量产制程的行列。 (作者为DIGITIMES顾问)

现为DIGITIMES顾问,1988年获物理学博士学位,任教于中央大学,后转往科技产业发展。曾任茂德科技董事及副总、普天茂德科技总经理、康帝科技总经理等职位。曾于 Taiwan Semicon 任谘询委员,主持黄光论坛。2001~2002 获选为台湾半导体产业协会监事、监事长。