智能应用 影音
工研院
member

量子点以及其应用

2023年诺贝尔化学奖的3位得主:Moungi G. Bawendi、Louis E. Brus以及Alexei I. Ekimov。

2023年诺贝尔化学奖,颁授予Moungi G. Bawendi、Louis E. Brus以及Alexei I. Ekimov,表彰他们在1980年代发现和合成量子点(for the discovery and synthesis of quantum dots)。 
 
大概念来说,量子点是人工制造的「原子」(artificial atom)。 
 
20世纪迄今,人类文明发展大幅度的依赖于电磁学,包括它所涵盖的电荷、磁、自旋、电磁波等诸种现象。对于用于承载、操控这些现象的物质,我们对其了解的基础知识是量子力学以及电磁学。

人类对于这些性质的应用,大都是顺从自然的安排。譬如矽的带隙能量(energy gap)为1.12 eV,集成电路的栅极电压就设为比这数值稍高,用以开关晶体管。又譬如DUV雷射光源的氟化氩(ArF;Argon Fluoride)分子的能阶间隙是6.42 eV,所以ArF DUV曝光机对应的波长就是193纳米。

换句话说,人类虽然开始掌握关于物质的部分知识,但是对于这些知识的应用,人类过去大致上是听从自然的安排,至少在那些物质的特性参数是如此的。
 
如果我们想「设计」物质的基础特性呢?譬如它的光、电荷、自旋等性质时呢?

我们用以建构的基础单元—也就是类似乐高的积木块—仍旧是自然的原子及其形成的分子,只不过这次要使用基础单元数目要多得多,1个量子点可能要使用100~10,000个原分子来建构,这样制造出来的量子点大小直径在数纳米至100纳米之间。我们的付出的代价是较复杂的制作程序,以及较为庞大的单元尺寸;收益是可控、可设计的量子点的光、电、自旋等特性。这些特性可以藉由量子点的大小、组成材料、形状等来调整其内部能阶,而能阶正是物质的量子特性之一,是以名之。 可以设计出人工原子,自然也可以设计出人工分子、乃至于超晶格(superlattice)等更大尺度的结构。
 
量子点的制作材料过去以II-IV族、III-V族为主,譬如硫化铅(PbS)、硒化铅(SePb)、硫化镉(CdS)、硒化镉(CdSe)、碲化镉(CdTe)、砷化铟(InAs)、磷化铟(InP)等。 
 
但是II-IV族量子点多含重金属,譬如镉与铅,对环境相当不友善,所以显示器中的量子点目前正转向III-V族的量子点,譬如磷化铟(InP)、硫化铜铟(CuInS)等。而III-V族量子点如当成生物中的体内(in vivo)当传感器或成像使用,可能有毒性或致癌,因此目前正寻找其他材质如矽、碳等,或者加以表面修饰(surface modification)以制作安全的量子点。 
 
量子点的应用非常广泛,包括显示器、单电子晶体管(SET;Single Electron Transistor)、太阳能电池(solar cell)、LED、雷射、单光子光源(single-photon sources)、二次谐波生成(second-harmonics generation)、量子点量子位元(quantum dot qubits)、生医研究里的传感器及成像(imaging)等。 
 
量子点显示器已经商业量产,制造方法与LCD差不多,只不过LCD中用来当背光(backlit)白光LED改为蓝光的量子点。制作流程先是在基板上以有机金属化学气相沈积法(Metal Organic Chemical Vapor Deposition;MOCVD)制作蓝光量子点,于这层之上制造并排的绿光量子点及红光量子点当彩色滤光片,另外留一处空缺透蓝光,形成RGB三原色像素。 
 
量子点显示器有深黑色(deep blacks)、最佳视角(optimal viewing angle)、原始色彩(pristine colors),较省电、高色彩饱和度(saturation)、较宽色域(wider color gamut),寿命亦较长。目前市场上的竞争对手是OLED,但是未来分辨率再走向8k以后,暂时没有能涵盖如此广泛色域的对手。 
 
量子点的2个前瞻性应用,分别是生物医疗研究与量子计算。 
 
量子点于生物中可以用于成像、标记(label)、运送(delivery)、传感等功能。量子点具有明亮且稳定的萤光,而且可以调整其颜色,还可以附加功能基以锁定特殊标靶。由于其尺寸仅数纳米,不仅微米级的动物细胞可以轻易解析,连尺度与其相当的蛋白质也可以用量子点来标记研究。 
 
一个有趣的应用领域是用来研究脑细胞及功能,这个研究领域又终将回馈到人工智能(AI)、类神经芯片(neuromorphic chips)、脑机界面等竞争激烈的尖端科技新领域。 
 
只是如前所述,量子点于体内毒性的问题需要先澄清并克服。 
 
量子点量子位元是被寄予厚望的量子计算技术,因为它不只是半导体兼容的技术—它本身就是半导体技术。如果原型开发成功,它可以立即利用目前成熟的半导体生产体系快速投入量产。 
 
目前的量子点量子位元是自旋量子元(spin qubit),即量子点中约束1个电子,而且这个电子的自旋的状态可以被操控、测量,当成量子位元使用。 
 
量子点量子位元的技术发展面临的主要挑战,是量子点量子位元之间不易形成量子纠缠,目前可以相互纠缠的量子点量子位元数一只手数得完。不容易被环境干扰的量子位元,也意味着不容易与周遭的量子位元形成量子纠缠。这是典型的工程问题—权衡两难以最佳化。
 
量子点此次获得诺贝尔化学奖实至而名归。它发现人工原子,使得人类拥有更进一步操控微观世界的能力,它对文明及经济的贡献已经开展在照明及显示器上,而它又可以成为促成其他领域新发现的工具,这些都是典型得奖作品的印记。 

 

现为DIGITIMES顾问,1988年获物理学博士学位,任教于中央大学,后转往科技产业发展。曾任茂德科技董事及副总、普天茂德科技总经理、康帝科技总经理等职位。曾于 Taiwan Semicon 任谘询委员,主持黄光论坛。2001~2002 获选为台湾半导体产业协会监事、监事长。