新一代电源核心 半导体和整流器新趋势 智能应用 影音
TERADYNE
ADI

新一代电源核心 半导体和整流器新趋势

ON SEMI 42W充电器设计范例背面
ON SEMI 42W充电器设计范例背面

目前智能手机的发展趋势,系以更大的屏幕尺寸、更高的屏幕分辨率及更快的处理器为主,但不断提高的硬件规格,其耗电量也越来越可观,以2K屏幕来说,耗电量为1080P屏幕的1.5倍以上,势必会增加锂电池的能量密度及提高充电速度,来延长手机使用的续航力。

所以,手机厂商为了兼顾手机轻薄外观的市场需求,电池容量设计则以3000~4000mAh为主流,也因此缩短充电时间的快充技术应运而生。目前主要的快充方案有高通Quick Charge、联发科Pump Express及OPPO VOOC等快充技术。

TI 45W充电器设计范例背面

TI 45W充电器设计范例背面

Navitas 65W充电器设计范例正面,使用RM8变压器

Navitas 65W充电器设计范例正面,使用RM8变压器

SuperChip结构示意图,Soder Bonding制程

SuperChip结构示意图,Soder Bonding制程

GPRC与业界GPP晶粒示意图

GPRC与业界GPP晶粒示意图

Z4GP40MH VR-IR曲线

Z4GP40MH VR-IR曲线

市场主要快充方案

高通以提高充电电压来缩短充电时间,从最早的QC1.0 5V/2A (最大功率10W)充电规格,与QC 2.0可兼容5V/9V/12V/20V四种充电电压及最大3A的充电电流 (最大功率18W),到QC 3.0支持3.6V到20V的工作电压动态调节 (最大功率22W),比传统5V/1A充电技术快4倍。

联发科与高通Quick Charge相似,以恒定电流及提高充电电压至5~20V来实现更大的充电功率,最新的Pump Express 3.0宣称能在20分钟内将2500mAh的电池从0%充到70%,比传统5V/1A充电技术快5倍。

OPPO则保持5V充电电压,提高充电电流至最高5A的方式来实现快速充电,宣称只需5分钟就可将容量3000mAh的电池充入48%的电量。

为了缩短手机或是笔记本电脑等3C产品的充电时间,无论是提高充电电压,或是充电电流,各家快充技术的本质都是提高充电器的功率,由早期5W提高至22W,甚至未来USB Power Delivery充电协议,功率最高可达100W (20V/5A),大幅缩短充电时间,也因此大功率充电器需求量增加在未来是可预期的。而电源功率的提高,势必变得体积更大、重量更重,因此业界投入了许多的心力于半导体构造及封装的研究与改良。

氮化镓GaN半导体

近年来,MOSFET已在切换电源中成为主要功率元件,从场效晶体管FET、双极性晶体管BJT、金氧半场效晶体管MOSFET、到绝缘栅双极晶体管IGBT,现在出现了氮化镓(GaN)晶体管,可让切换电源的体积大幅缩小。

日前纳微 (Navitas) 半导体宣布推出世界上最小的65W USB-PD (Type-C)电源转换器参考设计NVE028A,正是使用了GaN晶体管,相较于市面上现有基于矽Si功率元件的适配器尺寸约98-115cc(6-7in3),重量约300g,Navitas基于AllGaN功率IC的65W适配器,体积仅45cc (2.7 in3),重量约60g,相当轻薄迷你。

就目前Si功率元件切换电源来看,提高PWM(Pulse Width Modulation)切换频率虽可缩小电源体积,但伴随着损耗提高而降低其转换效率,及EMI电磁干扰的增加,需投入更多的EMI解决对策,因此业界以65kHz为一折衷的选择。

而虽然GaN晶体管具有切换速度快、导通损耗低、功率密度高等特性上的优势,但使用者直接将电路中的MOSFET换成GaN FET,其成效往往不符合预期,原因在于须以GaN晶体管为设计中心,选择电路线路架构及控制方法,才能将GaN晶体管的优势充分发挥。Navitas AllGaN功率IC,将GaN FET、IC与驱动电路及逻辑电路做了高密度的整合,简化复杂的线路设计,让设计者可以很容易的应用并发挥其特性。

Navitas 65W USB-PD适配器采用主动箝位返驰式转换器ACF架构(Active Clamping Flyback),开关切换频率达300kHz,提高了约4倍,频率提高则可缩小电感、电容及变压器(RM8)的尺寸;另外效率可符合欧盟CoC Tier2及美国能源部6级(DoE VI)规范的效能标准,满载时效率更高达94%,非常惊人。效率高损耗低可将散热片尺寸做得更小,甚至移除,因此Navitas 65W适配器的体积可大幅度的缩减,且未使用散热片,相对的成本也随之降低。

碳化矽SiC半导体

除了GaN,碳化矽SiC是目前发展较成熟的宽能带半导体材料,在新一代电源中扮演了重要的角色,与传统矽半导体相比,可应用在较高频率、电压与温度的严苛环境下,还可达到低耗损高效率的特性,随着全球对环境保护的重视,电子产品效率要求的提高,让GaN与SiC成为世界各国半导体业研究的重点。

矽IGBT一般工作于20kHz以下的频率,受到材料特性的限制,高压高频的矽功率元件难以被实现,而碳化矽MOSFET不仅适合600~10kV的工作电压范围,同时具备优异的开关特性,能达到更低的开关损耗及更高的工作频率,如20kHz的SiC MOSFET损耗可以比3kHz的Si IGBT低一半,50A的SiC就可以代替150A的Si IGBT,,SiC MOSFET的反向电荷Qrr仅同规格Si MOSFET的5%,都显示碳化矽有传统矽无可相比的优异特性。

另外,在碳化矽萧特基二极管(SiC SBD)方面,它具有理想的反向恢复特性,当二极管由顺偏导通转变为逆偏关闭时,碳化矽萧特基二极管极小的反向恢复电流可工作于更高的频率,在相同频率下也能有更高的效率。且碳化矽萧特基二极管具有正温度系数的特性,当元件温度上升时,顺向电压VF也随之变大,此特性若于并联使用时,可避免元件发生Thermal runaway的失效状况,也因此拥有更高的工作温度,及元件高温可靠度,因此广泛应用于开关电源中功率因素校正(PFC)电路上,PFC电路工作于300kHz以上,可缩小电感元件尺寸,使用SiC SBD可维持相同的工作效率。

在Si功率元件发展的相对成熟的情况下,GaN与SiC功率元件虽具有特性上的优势,但在制程上,其开发成本的花费要求仍较高,也因此GaN与SiC功率器件的应用仍未真正的普及。

贴片型桥式整流器的优势

因应未来小尺寸大功率适配器及快速充电器领域的开发,除了仰赖前述氮化镓(GaN)和碳化矽SiC半导体的持续发展,就目前的Si功率元件来说,在电源输入端的桥式整流器,用于充电器及电源适配器之交流输入端作全波整流功能,其封装形式也逐渐由体积较大的插件式,发展为轻薄短小的贴片型小尺寸封装,例如智威科技4A桥式整流器Z4GP40MH,正是使用了SuperChip 片型二极管封装技术,将元件厚度由传统KBP插件式封装的3.5mm,降低至1.3mm,元件尺寸也缩小至8.1(W) x 10.5(L) mm,体积仅KBP插件式封装的17.5%,不仅可缩小元件尺寸节省空间,也可符合高度有限制的特殊应用需求。

以下为ON SEMI 42W、TI 45W及Navitas 65W设计范例照片,电源适配器体积有缩小的趋势,且皆使用了贴片型桥式整流器(蓝框标示处)。

贴片型桥式整流器采用SuperChip片型二极管封装技术,除了将二极管贴片型化,内部结构有别于业界的打线Wire Bonding制程,使用焊接Solder Bonding制程,如下图结构示意图,二极管晶粒焊接于上下两铜布线,铜布线连接到元件正负两端子,二极管晶粒产生的热,可由铜布线导到端子,其散热能力较打线结构更佳,降低应用时的元件温度。

贴片型桥式整流器采用的芯片也具备关键性,二极管PN接面以玻璃护封来降低逆向漏电流,GPRC全切面玻璃护封技术,将整流二极管PN接面完整护封,具有高温漏电流较低的特性。 如下高温逆向漏电流特性曲线所示,GPRC芯片于150度C环温测得高温漏电流约50uA,较GPP于125度C时的高温漏电流约100uA低,产品具有更高的芯片操作温度Tj (Tj=175度C max.),也具有更好的产品可靠度。

结语

在手机及笔记本电脑追求轻薄美观的同时,必须兼顾其电池续航能力,在电池技术有新一代重大突破前,市场的趋势目前已朝小尺寸大功率适配器及快速充电器领域开发,来缩短充电时间符合消费者的使用习惯。

快充方面,各手机厂商与其合作的快充阵营也开发出一代又一代更快速的充电协议及硬件技术,新款手机皆已搭配原厂快充配件,快充普及率已大幅提高,期待未来USB Power Delivery充电协议能将其规格统一,加上如氮化镓GaN及碳化矽SiC等优异特性功率元件的出现,以及小尺寸的贴片型桥式整流器持续发展,使电源适配器及快充技术能更进一步往更大功率、更快速的充电、更小的体积与更低的成本迈进。