智能应用 影音
我的德国同事们 (一)
我曾经服务于一家台德合资公司,经历缔盟、合作、对簿公堂又握手言和的各个阶段。对于德国同事们,我有远较于刻板印象(stereotype)深刻的体验。平地起工厂,待到可以迁入时,几乎所有自己有办公室的德国同事们书架上都满布数据夹。数据夹有几种颜色,连空的文件夹上的标签都预先贴好,彷佛一上任就有一个缺省的工作框架,一切井然有序。在那个尚无云端硬盘的年代,对于文件和数据分类和储存的如此执着,令我惊异着迷,立马学了起来。后来,果然派上用途了:在诉讼的过程中,我找到一份他们没有储存的关键档案—这份文件双方用传真往来,而传真用的是感热纸,用三孔夹钉孔不太顺当,德国同事因而没存留;我却是一以贯之,硬是比他们多存了这一份!这是师夷长技以制夷。说是德国团队,实际上派遣人员(assignees)是以德国人为主的多国籍人员团队,最多的时候合资公司有十几个国籍。这样的合资公司以英文为官方语言,乃理所当然的事,这自然包括公司的规章、数据、文件、档案以及会议语言,贯彻的程度可能超过现在很多正在全球布局的公司之努力。这家德国公司内部当然也使用英语。在它成立的170余年中,曾经设立超过1,000家子公司,并在全球超过190个国家营运,以英文为公司官方语言的政策早已行之有年。但是令我印象最深刻的是连2个德国人之间的电子邮件也全使用英文。有一次,派遣团队的在地最高指挥官执行副总,在一件事情的协商中要争取我的同理心,拿了他的电脑显示他们公司营运长给他的指令:You must support xxx!一连串的电子邮件全都是英文的书信往来。这种严格贯彻到公司最顶层的全球化政策,铭刻到骨子里了。除了驻地执行副总之外,几乎每个派遣人员都聘请中文教师于公余闲暇时间学习,这似乎是公司鼓励的政策。除了全球化的措施外,驻外人员的在地化似乎也是公司的政策之一。进驻厂房之后不久就过年了,然后初五依例祭祀开工。这位执行副总神态自若的加入拜天公的高管行列中。基督徒不持香,却也礼敬如常。据我所知,这是他首次被外派到华人地区,举止却从容自若彷佛预演过似的。后来才知道,这家在全球营运的老牌德国公司,内部聘有几位文化人类学专长人士。除了平常参与各地市场行销、政府关系等与在地文化密切相关的事务外,另外就是为外派人员准备好融入驻地的教材,这已是德国公司行之有年的做法。事实上日本甲午之战后接收台湾时,已先后在1895、1896年派遣伊能嘉矩、鸟居龙藏2位文化人类学家来台湾打头阵,了解风俗民情,做为治理的基础,这比我们时至今日才开始想聘地缘政治专家早了足足一世纪有奇。德国公司先后派了3个女性技术副总来台,先是技术移转、后来共同研发。第二个女性主管的经历颇有启发性。她比另外两位年轻许多,技术根底紮实。除了有时候爱使小性子外,没什麽好唠叨的。大概是她在此地任职的绩效优异,任期满后转任德国公司座落于法国的另一个合资晶圆厂总裁,居然让这厂转亏为盈—在法国欸!值得一提的是她接受的是德国双轨技职系统(duale ausbildung)教育,一面在工厂任职、一面在学校接受课堂教育拿的博士学位。这就是这几年产业界热议的技职教育体系。要设计、执行如此的技职教育体系并不难,不容易的是产业怎麽对待技职体系教育出来的学生。社会及产业必须能公平对待各种教育体系出来的学生,技职体系才有可能生效。这是为什麽德国技职教育屡屡为人称道,而台湾技职教育濒于消失的原因。这家德国公司向我展示双轨技职系统如何奏效的精髓。 
终极显示技术Micro LED 智能手表市场成关键滩头堡
苹果日前发表2023年最新iPhone 15系列及Apple Watch系列等新品,就各项产品规格而言,大抵是渐进式的提升,但在占零组件单一成本比重最高的显示器方面,仍然是采用AMOLED,与2023年产品差异不大,比较特别的是第二代Apple Watch Ultra最大亮度提升50%,至于新兴的Micro LED何时能搭载在苹果的智能手表上? 短期内仍然没有迹象。Micro LED号称是终极显示器,因为它具备众多优异显示特性,不但在亮度、对比值、精细度、尺寸范围、反应速度、高效率/低功耗、可挠曲、透明性、内嵌其他传感器等方面的潜力,均优于目前占主流地位的TFT LCD及AMOLED技术,所以产业对发展Micro LED的热度相当高。Micro LED目前真正商品化的应用,是超大型显示器,TFT LCD玻璃基板难以切割出来的100寸以上显示应用,更适合能采拼接方式弹性组合的Micro LED。三星电子(Samsung Electronics)在CES 2023展会中,推出50、63、76、89、101、114与140寸新机型,主打企业行销宣传及家庭电影院应用,价格虽与前几年相较有所下降,但仍是奢华等级,例如北美市场89寸Micro LED TV产品,售价约10万美元。由于电视机用的显示面板并不需要很高的精细度,加上Micro LED TV因量产性低导致单价偏高,对于目前在巨量移转/巨量修复技术仍在发展中的Micro LED业者练兵而言颇为适合。若Micro LED显示器要真正达到大量出货,第一个滩头堡市场应该就是在智能手表。全球智能手表1年的市场需求约1亿支上下,其中苹果的Apple Watch约占半数,苹果若能领先采用Micro LED显示技术,势必能带动小尺寸Micro LED在穿戴式应用市场的起飞。为何智能手表的量产优先顺序,会高于智能手机?一方面智能手表的市场规模仅智能手机的10分之1以下,此外,1支智能手表其显示器需要的Micro LED像素数,仅约智能手机用显示器的15分之1至20分之1,两项因素加乘考量后,明显可见Micro LED切入智能手表应用市场的门槛较低,包括LED芯片厂的投资额、初期量产所需要的Micro LED数量等,后者涉及到良率、量产性方面能否满足初期的市场需求。尽管苹果产品(包括手表、MR等)采用Micro LED的脚步不如原先预期的快,但是其他业者包括友达等,展现出更为积极的态度,预计2023年内要出货给客户智能手表用的Micro LED。其实,友达在车用Micro LED显示器的脚步也相当快,不过,众所周知汽车产业链比较保守,要打入主力车厂的供应链往往需要3~5年的布局及认证,车厂需要先确定其所采用的电子零组件,在可靠度、货源稳定供应能力上没有问题,所以倾向希望友达等Micro LED业者先在消费性电子产品市场开创量产佳绩,之后再应用到汽车市场,毕竟汽车产品的使用周期长达10~20年,车厂会采取比较稳紮稳打的策略。目前市场规模1亿支上下的智能手表,随着个人健康监测需求提升,市场可望持续成长,一旦Micro LED成功切入智能手表之后,预期将成为2030年以前Micro LED显示器最大的出海口。
AI风潮引爆矽光子应用
2023年9月的SEMICON Taiwan会议中,矽光子(Si photonics)技术引起热烈讨论。在9月5日「矽光子国际论坛」中,笔者也受邀与台积电、日月光、工研院、美国Cisco及日本爱德万测试(Advantest)的专家同台,主持人是日月光CEO吴田玉,共同讨论矽光子技术在人工智能(AI)时代中,所能扮演的角色。以下是个人在这个议题中,所表达的看法。众所周知,矽光子技术已经发展超过20年,主要是利用CMOS成熟制程,将处理光信号所需的光导管、调变器、光栅、耦合器,甚至光侦测器等主被动元件整合在矽基板上。目前唯一无法整合进矽基板者,是半导体雷射,因为涉及到不同的材料系统,只能以封装的方法处理。矽光子基板负责将光的信号转换为电信号,此为接收端,发射端就是将电信号经由雷射转换为光信号。由于使用成熟半导体制程,在微小化、整合度、量产的良率,甚至成本都具有优势。再加上使用光信号,对比于电信号,又有着高带宽、低延迟(low latency)以及低功耗的优势。自从光纤通讯在1980年代被引进之后,一直担任信号传输的角色。初期在人类使用数据量还不大的时候,光通讯运用在长距离的传输,如海底光缆、大都会地区的网络。随着数据量的提升,光通讯开始进入区域网络。近来生成式人工智能(generative AI)的兴起,最大的数据产生及传输量是发生在AI服务器之间,因为任何一个大型的模型,都包含数百亿个参数,而每次训练所要花费的算力是惊人的,这些都依赖芯片彼此间的平行运算以及数据交换。拜半导体先进制程之赐,目前处理或计算1个指令,只需要1~2 nsec的时间;但是数据传输速度的增幅,却永远跟不上算力的增加。光是在光纤内运行1米距离会产生5 nsec的延迟,因此AI服务器的算力有相当的时间在等待数据而停滞。若改用电信号来传输,等待的时间就更久了。解决之道当然就是将转换光信号的装置,愈靠近CPU/GPU/ASIC芯片愈好,以改善信号延迟,这中间最好避免掉电路板。因此,co-package optics(CPO)包含矽光子基板,便应运而生。CPO目前主力是放在交换器(switch)内,将矽光子基板与处理电信号IC芯片,以堆叠(stacking)的封装方式结合,再连接上光纤,比邻于各式IC处理器,这就是最靠近及最低延迟的选择方案了。在2000年代中期,IBM在其年度的技术展望(Technology Outlook),特别提出光连结(Optical interconnect)为未来技术的重点。IBM非常自豪于技术上的预测,也表示自己从来没有预测失败过,有的只是发生时间的早晚。彼时并不知道会有AI运算的蓬勃发展,也不清楚半导体的技术会进展到3纳米以下。但是很明确的是,人类在数据传输的使用量会持续地增加,而矽光子技术将在光连结上扮演重要的角色。当时光连结的提出,也不清楚是会发生在芯片与芯片间(chip to chip)信号的连结,还是载板之间(board to board)信号的连结,或者是服务器架间(rack to rack)的信号连结。如今服务器架间的信号连结,甚至于架上的层与层之间(unit to unit),已经广泛地采用光连结技术。而芯片之间信号的连结,已经被台积电的先进封装技术3DIC/CoWoS/chiplet/fabric,使用电信号交换给解决了。接下来的重头戏会是载板之间的信号连结,目前的主力还是使用电信号的连接,至于光的连结就拭目以待。CPO结合矽光子技术,提供AI风潮中提升数据传输速度的最佳解决方式,这对于产业生态链却是一个巨大的改变。传统使用插拔(pluggable)光模块的生态系,并不会坐以待毙。在今年(2023)的全球光通讯大会(OFC)上,linear-drive pluggable optics(LPO)即受到广泛的注意,被视为传统势力的一大反扑。Linear-drive的概念是拿掉插拔光模块内re-timer/DSP功能,而增加在ASIC内信号处理的负担,如此便减低模块内的信号延迟及功耗。因此之故,可以再往前推进1~2个时代的产品,而整个产业生态链不会有太大的变化。如同半导体制程所使用的浸润式DUV微影设备,在不改变DUV曝光机的生态下,又往前推进几个时代,直到EUV曝光机接手。矽光子CPO的时代终究是会来临,若LPO顺利推展,可能会使发生的时间延后。事实上,linear-drive的概念亦可以使用在CPO上,如此不论在信号延迟及功耗上,又会有更佳的表现。本文感谢与郑鸿儒博士的讨论。
越南的半导体旅程
在全球供应链重新布局之际,越南成为电子制造加值链的一个新环节,并为越南发展半导体意向增添几分想像。半导体的发展,可以依靠的不是终端消费市场,而是电子系统的大量制造。半导体的几个较发达的地区,从美、日、台、韩、中等无不经历此一过程。如此才有办法解释为何台、韩规模不大的国内终端消费市场,最终撑起如此巨大的半导体产业。越南人口近亿(约9,950万人),倍于台、韩,全球电子制造加值链的移转也是重要新节点。目前越南半导体产业已开始发展IC线路设计,如FAP(Financial and Promoting Technology;一家大型的信息服务公司)与国营的越南电信(Viettel)下的设计事业群/子公司。半导体制造方面已先进入后段领域,英特尔(Intel)已在河内投资封装测试厂,而且宣布将扩大投资。三星电子(Samsung Electronics)的封装测试厂设立于北部太原省(Thai Nguyen Province),2023年第3季已开始量产FC-BGA(Flip Chip-Ball Grid Array)。Amkor于北部北宁省(Bac Ninh Province)设立的封测厂将于第4季开始量产。这几个大厂的设立显现出「北存储器、南逻辑」的格局。至于半导体制造的核心晶圆厂,越南政府在优先次序上是置于IC设计之后的,据说是由于先进晶圆厂投资金额较庞大、生态环境要求比较严格、需要较长期技术累积的理由。但是上述的理由只适用于逻辑先进制程的12寸厂,对于毋需依托于先进制程的领域如半导体功率元件、矽光子等,这些原因并不太会形成巨大的进入障碍,这些领域是可以现在优先考虑的。以宽带隙(wide band gap)半导体为例,目前次产业的形成还在初期,先进者并无太明显的先发优势,加上产业的竞争方向比较倾向于材料的研究,较少竞逐新制程开发,研发经费并不需要在经营体量形成规模经济后才能累积足够盈余、自主研究,因此目前进入此领域也比较有机会在竞争过程中逐渐赶上领先族群。以越南这样一个半导体制造领域的新进者,在目前的既有的条件下应该先做几件事。第一,是立法投资奖励条例。目前越南并无类似的法令,也许有补助金,但是以行政命令补助,与依法规补助,对于投资者的风险评估是天差地别。特别是在目前的世界竞争格局之下,要建立、或者是要重新建立半导体制造能力的国家几乎都动用国家资本、以法令规范行之。补助办法就是一个费时的研究专案,不同的补助办法会导致不同得结果,而且有些是出乎预期的。兼之立法也需要时间,即使越南半导体制造能力发展优先次序排列较后,奖励补助条例依然是马上要开展的事。第二,是提升目前既存的科技园区,或者建立专用半导体园区,直到能支持晶园厂能运作的规格。科技园区是越南行之有年且有成效的措施,譬如Amkor的封测厂就设立于安丰工业园区(Yen Phong II-C Industry Park)之中。但是晶园厂有独特的需求,譬如极稳定的电力供应、特殊气体等。政府预先完成的基础设施对于投资评估是另一项吸引力。第三,是人才培育。人才培育需要先行于产业发展,而且前置时间长。大部分的人才培育需要公权力的运作,这也是马上要做的事。要切入半导体制造环节并且在其中存活下来当然不是容易的事,上面列的也只是必须先行的几项。但是也有要注意的地方:在政府的支持下仍然要保持合理的市场竞争,以刺激整体产业的活力,此乃半导体产业协会(Semiconductor Industry association;SIA)对印度政府的忠告,我相信对越南也受用。
迈向低碳永续家园
梭罗(Henry David Thoreau, 1817~1862)曾说过:「We can never have enough of Nature.」他一直在告诉我们永续发展的重要性。近年来, 经济部大力推动永续发展(Sustainable Development Goals;SDGs),甚至在社会新创暨新创产品及服务采购奖也涵盖SDG领域。在智能农业领域,AgriTalk(农译)技术一直朝低碳永续研发,除了非常坚持无毒有机的农业生产,更进一步,希望智能农业也能帮助净零碳排,于是以人工智能(AI)物联网(IoT)系统发展低消耗、高效率之精准农业系统,导入智能碳权云端系统,打造植物碳吸存模块化系统,可以帮助达成净零碳排的目的。利用人工智能及物联网,AgriTalk控制让智能农业生产能够标准化「固碳总量」及精准记录「碳足迹」,其作法是以AI精准施肥及农药使用,保护土壤永续。同时以IoT智能控制记录总用电及用水记录(进行碳足迹监控)。AgriTalk采用袋耕的方式,很容易将农业用废弃物炭化生成「生物炭」回归土壤及固碳。有趣的是,AgriTalk生产的姜黄在吸收二氧化碳进行光合作用时,在泥土内的姜黄茎部能固碳,效果极佳。AgriTalk多方面进行研发,让有机无毒智能技术可中和土壤,增加土壤的保水力及通气性,吸附土壤养分使其不易流失,并能提高族群数量及多样性。生产农产品为例,考虑净零碳排将无可避免地增加生产成本。然而,AgriTalk仍坚持农业应以永续发展为目标,并不遗余力地追求此目标。目前,AgriTalk已达到14项SDG指标,并得到了回报,经济部社会新创暨新创产品及服务采购奖特别颁发SDGs第12项指标的荣誉,亦即农业智能化服务。AgriTalk不计成本地实践净零碳排这种做法,在一般传统农业生产往往不易达成。这种做法在追求营利的同时,也不忘关注健康及环保问题,秉持着对地球永续经营的关怀。这样的承诺和移动对于农业产业而言具有重要意义。AgriTalk所实践的永续农业模式,除了促进生产力的提升,也对环境造成的影响更加友好。虽然过程中可能需付出额外的投资,但对未来环境和社会的影响却是无价的。希望AgriTalk的做法能激励其他农业从业者,引导他们寻找更加永续和环保的方法来生产农产品。这个事例向我们传递了一个重要的信息:在追求经济效益的同时,我们也必须关注地球的健康,并寻找在这两者之间达成平衡的方法。只有如此,我们才能实现可持续的农业发展,为我们的子孙后代留下更美好的未来。
印度半导体奖励政策与发展策略 (二):以营利为导向的策略
半导体的产业发展其实是一个产业持续累积资金的过程,而只有盈利的企业才能够累积资金、扩大规模,最后足以用于自主研发,追上位于产业前沿的竞争对手。政府补助只能当成产业启动器(jump starter),却不能持续用于续命。美国半导体协会(SIA;Semiconductor Industry Association)之前访问过印度,给印度政府的建议之一是保持市场竞争性。唯有如此,才能培养出能长期在世界市场竞逐的公司和产业。一个产业的发展可能以十数年计。如果将容易进入营利的状况的因素纳入发展策略中考量,产业先发展领域的选择也许会与目前印度电子与半导体协会(India Electronics and Semiconductor Association;IESA)的建议不同。譬如扩大自有产品IC线路设计公司的占比。印度有丰沛的IC线路设计人力,至去年(2022年)为止,从业人员已达5.5万人,占世界IC线路设计从业人口约20%,人力资源充沛。IC线路设计工作也与基础设施较无关系,而且印度IC设计次产业已运作多年,大部分的障碍显然已经成功被排除。另外,相对于半导体制造,IC线路设计计所需的投资显然较小。惟印度庞大的专业队伍目前从事的业务大部分是IC设计服务,只有较少数的公司提供自己的产品。扩大自有产品IC线路设计公司在整个产业中占比,乃相对而比较容易成功的一种做法,而且所需的发展时间较短。利用正在逐渐移入印度的电子系统制造业的半导体需求所创造出的市场,可以提供自有产品IC线路设计公司的发展机会,这可以替代前述的政府销售补助或策略性采购的铺贴。某种程度也提高半导体自给率。在发展IC线路设计产业的同时,对比在特定地点政府先行集中建设必要的半导体制造基础设施,并且培养半导体制造及制程、材料研发人才,这些都是比较耗费时间的工程。这样的发展顺序虽然对于半导体制造能力的取得过程看起来比较迂回,但是商业成功的机会较高,而且稍后的半导体厂也在设立后不必同时面临基础设施缺乏、人力资源短缺以及半导体制程量产同时的三重压力。半导体产业加值链长、面向广,后进者不可能同时间开启多条战线。好的发展策略自然是依托自己已经具备的优势点、面,顺势扩大在整产业中的竞争优势环节。最后要强调一下,半导体产业的最基础本质是营利事业,不是军工业。标定取得某种特定技术却无法形成良性商业循环、自我支持持续发展到最有竞争力的领先群,如此发展策略容易导致失败,也不乏前例。制定产业发展策略以及相关的奖励政策时,须将欲扶植的次产业可能获利因素,放在更为优先的政策考量顺序上。(作者现为DIGITIMES顾问)
印度半导体奖励政策与发展策略(一):奖励政策与发展意向
印度内阁在2022年9月21日发布〈Modified Programme for Development of Semiconductor and Display Manufacturing Ecosystem in India〉,用以支持其成为电子系统设计及制造(Electronics System Design and Manufacturing;ESDM)的世界枢纽(global hub)愿景。企业投资印度的常有顾虑之一,乃基础建设不足问题,则由于2020年4月1日公布的〈Modified Electronics Manufacturing Clusters Scheme〉(EMC 2.0)及其中的Common Facilities Center(CFC)来支持。先说基础建设不足的问题,单只是政策及补助是不容易见成效的,因为基础设施有很多部分不单只是投资可以解决的。譬如半导体所需要的高压线及水源,废水、废弃物处理,乃至于环保法规,都需要公权力的行使。这个部分由政府主动地作为先行启动计划、集中于一处提供较完整的产业基础设施、形成聚落等,是比较有效率的作法,可以省却投资者决策过程中的疑虑,并且加速投资决策后漫长的准备、申请程序。此类作法早有成功的先例,譬如台湾的科学园区,或者是国内的一些高科新区,都是政府先完成基础设施再招商,让企业的考虑单纯多了。至于发展半导体产业的部分,这个奖励条例可能有点误导之嫌。半导体与显示器虽然享有部分类似制程,却是两个截然不同的产业,产业的业务模式竞争样态差别甚大。不然也很难解释为何国内在发展半导体和显示器两种产业,呈现截然不同的结果。将两种产业的奖励政策以分别的条例来规范是比较安全的做法。印度有兴趣的半导体制造领域包括几类:第一类是逻辑,虽说是所有技术节点政策都支持,现在看来40纳米仅是可以接受,目标应该放在28纳米;第二类包括化合物半导体、矽光子、传感器(包括MEMS)和离散元件(以下统称特殊产品类);第三类是封测。对线路设计另有奖励办法,包括对奖励设计产业基础设施(infrastructure)的〈Design Linked Incentive Scheme〉条例,补助设计相关支出的50%;以及支持设计实施(deployment)的〈Deployment Linked Incentive〉,补助净销售金额的4~6%。印度电子与半导体协会(India Electronics and Semiconductor Association;IESA)对政府的建议是依次发展封测厂、特殊产品厂,最后才及于先进制程厂,由易至难,看起来井然有序。先进制程方面,IESA建议聚在28纳米上,这是摩尔定律发展过程中每一个晶体管制造成本最低的制程。先发展封测的原因是投入较少、雇用较多人数,次而特殊产品的原因是因为这些工艺过去的发展期较短,比较有机会迎头赶上。但是,如此简化的观点显然忽略规划产业发展应考虑入的细节。诚然,特殊产品的工艺有很多是8寸厂的制程,在传统半导体的制造工艺上看来并不太困难。但是这此特殊产品的晚出现,也有它的道理。譬如化合物半导体的SiC,出现在军用电子产品已有多年,但是SiC晶圆生产困难,良率较低,以至于现在用SiC做的功率元件,其晶圆成本还占元件制造成本的一个相当百分比。类似这样的例子不胜枚举。也就是说,单只是从半导体制程的先进与否来探讨产业发展策略,并非是一个全面的衡量标准。制程简单而晚出现的产品自然是有其他的障碍妨碍它的问世,所以要进入这些领域要有其他投入的准备,譬如半导体材料的研究与开发。即使被视为第一步的封测,也要有类似的心理准备。
假如室温超导体是真的?
Nature News在2023年8月16发表的新闻以〈LK-99 isn’t a superconductor — how science sleuths solved the mystery〉为题,引用许多验证实验的文献,对于前一阵子在国际学术界、产业界引起的室温超导体骚动,算是暂时划下休止符。超导体在其临界温度(critical temperature)下要同时具有2个物理特性:1. 零电阻,所以电子在流经超导体时不会发热。2. Meissner effect,当有外加磁场时,磁场无法延伸入超导体内。我们经常看到的科普片中一个超导体悬浮于磁铁之上,即为此一效应的视觉展示。超导体现象的发生以前,是需要极严苛的周遭条件,譬如极低温或极高压。也有理论来描述这现象:BCS理论(Bardeen-Cooper-Schrieffer theory)来描述,这是1972年物理诺尔奖得奖作品。需要极端低温的环境下,才发生超导现象严重的限制超导体的应用—因此从1911年发现超导体现象迄今,物理学家致力于发现临界温度较高的超导体的材料。这百年最标帜性的突破是Georg Bednorz与K. Alex Muller于1986年发现的陶磁超导材料(1987年诺贝尔奖得奖作品)及随后朱经武的钇钡铜金属氧化物(Yttrium Barium Copper Oxide)。之后虽然有新材料持续提升临界温度,但是关于其物理机制存有分岐,没有令人一致信服的理论。这其实很大程度的减缓临界温度的提升—没有理论基础的实验尝试,有时看来像是炼金术。Nature News的文章用那些检验实验的结果,简单解释为何LK-99非超导体:韩国团队所看到的部分悬浮(partial lifting)现像是铁磁(ferromagnetism)机制;材料本身其实是绝缘体。看到的电阻在特定温度下骤降,乃因样品中掺有硫化铜的杂质,在那特定温度时硫化铜产生相变,造成电阻骤降。没有杂质的样品,是看不到电阻骤降的现象,这就暂时结论学界目前的扰动:LK-99不是室温超导体。但是如果真有室温超导体,最该立即投入研发的应该是半导体产业。半导体发展迄今,各方向发展的瓶颈几乎都集中于散热问题。半导体发热的来源,简单归结有2个。首先,是晶体管于0与1状态切换所需的能量,每次运作大概花1 fJ(femto Joule,10的负15次方)。看起来数量级很小,但是考虑到现在1片芯片上晶体管的闸极数(gate count),动辄以tera(10的12次方)为单位;而晶体管的运作速度可以达到ns(10的负9次方)等级,也就是每秒最高可以有10万亿次运作,发热量便相当可观。但是,更大的发热源是焦耳热(Joule heat),也就是当电子通过金属时因为电子碰撞晶格产生的热耗散。这个热耗散存在于芯片与芯片之间的金属连线,譬如数据在CPU、DRAM、NAND Flash之间的穿梭来回—这其实是一个电子系统中最大的热耗散来源,也存在于单一芯片之中。现代的IC芯片中有许多的信号线和电源线。现在的新工艺之一:晶背电源分配网络(BS-PDN;Back-Side Power Distribution Network),将供应晶体管运作电源的线路从原先的金属在线层,移到晶圆背面,使之比较接近坐落于晶圆底面的晶体管。单只是这样的缩短电源线的长度,就能大幅降低芯片的功耗和热耗散。假如室温超导体存在,最该立即投入研发的应该是半导体产业。单只是以室温超导体材料替代目前单一芯片中的金属连线,以及在先进封装中用以连络芯片之间的连线,如此造成的导体价值增进就远超过目前所知超导体的其他的应用价值。当半导体产业制程微缩的路走得日益艰难,先进封装以及新材料必须分担半导体创造新价值成长的责任,而室温超导体显然是新材料领域中,可一举解决目前半导体各方案中最大的共同瓶颈—热耗散问题。虽然此次的挫败显示室温超导体的路途还长,但是室温超导体的利益巨大,作为已走到世界最前沿的几个半导体龙头企业,前瞻研究中室温超导体可以开始考虑涵盖此一议题了。 
国内落居美国第三大进口国的背后成因
2023年7月时,国内外媒体引用美国商务部贸易统计数据,大幅报导合计2023年1至5月贸易数据,墨西哥已超越国内大陆成为美国第一大进口国。8月8日美国公布上半年最新数据,自国内进口额为2,030亿美元,较2022年同期大幅下滑25%,不及自墨西哥与加拿大进口的2,360亿美元与2,110亿美元,退居美第三大进口国。这其中数字的背后该如何解读?与台湾又有关联呢?国内下滑或是加墨崛起?若观察美国进口数据,近年自国内进口的高峰出现在2018年10月的545亿美元,其后便因美国发动贸易战,陆续几波对多项国内进口产品课以高关税后下滑,但因2020年第1季疫情爆发后的疫情红利,及国内2022年封控的递延需求,而分别在2022年1月与2022年8月回升至相近的进口金额,分别为532.1亿美元及540.6亿美元,其后便快速跌落至400亿美元以下,而自2023年2月为墨西哥及加拿大超越后,进口金额便持续落居两国之后。国内从2022年3月27日上海分区分批封控,到2022年12月7日突然全国解封,约长达8个月期间。根据BBC统计,从3月到10月,国内有超过150个地级市遭封控,其中有114个城市是在8月到10月进行的。若看国内整体出口数据,除了3、4月受到影响外,从7月的3,295亿美元逐步下滑至11月的2,929亿美元,12月略为回升,2023年1月再降至2,872亿美元,但美国自国内进口金额则是从10月就开始「跳水」。我认为除了美国2022年第4季经济活动走缓外,也反应美国分散供应源的走势,尤其是在2022年10月美国对国内祭出严厉出口管制措施的吓阻效应发酵。反观墨西哥与加拿大,2018年不只是美中贸易战开打年份,美国总统川普(Donald Trump)、加拿大总理Justin Trudeau及墨西哥总统Enrique Peña Nieto于该年11月签署美墨加协议(USMCA),取代早先的北美自由贸易协议(NAFTA),并于2020年7月1日生效。虽说这协议是川普施压邻国的产物,对美国最为有利,但也纳入汽车制造的新规定。若要在北美区域进口小客车与轻型卡车豁免关税,区域内自制零组件含量从NAFTA时代的62.5%,自2020年7月1日起算,分四年逐步提高为75%,重型卡车则分3阶段调整至70%。USMCA架构下 再度凸显加墨重要性千禧年前加墨均为美国第一大第二大进口国,国内则分别于2003年及2007年超越两国,自此跃居美国第一大进口国,以2022年来说,国内仍占美国商品进口金额的17.1%,明显领先墨西哥的13.6%及加拿大的13.3%,但自USMCA生效后,从月度美国进口数据中,明显可见墨西哥及加拿大对美出口持续成长的趋势。2023年上半国内落居美国第三大进口国一事,归纳起来,主因是美国自国内进口大幅减少,其次才是墨西哥及加拿大对美出口增温的结果,但在逆全球化的大趋势下,可预期长期来看,美加墨区域内贸易将持续胜于美中贸易,对台湾企业主而言,若企业全球布局蓝图中,美国市场乃重中之重的话,那麽也该有配套墨西哥及加拿大布局才是,不是吗? 
产品标准规格对现代半导体产业景观的形塑 (四):统一标准建立的挑战
车用半导体零件标准制订,存在一定的挑战。第一个自然是供应链区域化的趋势。车联网是未来汽车发展的基础框架,目前国内已在多地建立车联网的先导区。国内系统以外的市场是否会采用相同或类似的标准呢?存疑。这可能分裂未来的产业统一标准,乃至于市场。第二个挑战是虽然电动车销售量已超过1,000万辆,但是产品的概念仍存在高度流动性。也就是说,电动车/自驾车的产品概念仍在快速演化之中,这也不是全然的向壁虚构。电动车/自驾车目前的演化方式像过去的手机,最大程度的将既存的可携电子系统全部吸纳进系统中,多少也会依存于既定电子系统的标准。譬如网络的技术无论如何,也是要基于现行5G技术标准,只是特化于汽车的应用,这样车联网的技术就有粗略的一个技术标准框架了。但是电动车/自驾车更精细的功能犹存有相当的空间,车用半导体零件标准制订必须对这些创价空间留存弹性。挑战还来自半导体本身技术的快速进展。半导体技术不再只依循制程微缩的单一增值路径,增值的方法另外还有使用新材料、先进封装等方法。以已经使用先进封装多年的CIS (CMOS Image Sensor)为例,这是在汽车中已经开始提高用量的传感器。目前的CIS至少包含像素阵列(pixel array)及影像信号处理器(ISP)2个芯片,以先进封装的方式相结合。由于先进封装技术的进展,堆叠3个、4个芯片—譬如再加上DRAM以及做边缘计算(edge computing)的逻辑芯片—乃至于更多的芯片,都可能在可见的未来发生。封装后的产品,不只是效能参数改进的问题,更是功能变化、扩充的问题。虽然过去其他产品标准的订定也会配合半导体制程的演进而渐进式修改,譬如SDRAM、DDR、DDR2、DDR3 等的演化,但是总体的架构变化是渐近式的,而且每次标准的使用也稳定好一阵子,系统和半导体零件业者都可以使用新标准获得相当回报。然而,车用半导体的变化有可能比较快速而激烈,这对于半导体零件标准制定形成挑战。做为系统厂商的汽车厂商要垂直整合半导体到哪一个价值环节比较有经济效益?如果不考虑地缘政治的因素,我认为到ADAS 或L3、L4自驾芯片的设计也许是个好的界线,这是总结手机公司发展经验可以得到的结论。整合到此部分,系统公司已足以掌握系统核心价值的创造,譬如Tesla的半导体垂直整合目前便止于L4的芯片设计。如果汽车公司再深入半导体制造部分,就容易面临要同时具备多种核心能力-包括汽车设计、制造与半导体制造-的挑战。而半导体的环节也必然会面对规模经济不足的窘境,毕竟竞争对手是不会采用对手设计、制造的半导体零件的。以此来考虑车用半导体零件统一规格标准,在汽车的ADAS/自驾芯片定义界面标准会是一个比较合适的起点。从此以下的半导体零件,制定较为有弹性的架构及可靠性规格。讲架构是因为半导体技术部分还存有流动性,架构性的标准比较容易去接纳新的技术以及相应的新增产品功能;可靠性更多的是针对汽车安全的相关规格。衆所周知,汽车对于安全性的要求近乎完美,而可靠性只是对于安全性的基础要求之一。当硬件的标准订定之后,车厂比较能减少责任的风险,它也会让法律的修订、保险产品的设计因有硬件的依据加快进行,而这些非技术的因素是自驾车正式问世的最大难题。